Question Number 29446 by prof Abdo imad last updated on 08/Feb/18
$${let}\:{give}\:{a}<\mathrm{1}\:{find}\:{the}\:{value}\:{of} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}−{acos}^{\mathrm{2}} {x}}. \\ $$
Commented by prof Abdo imad last updated on 07/Mar/18
$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{1}−{a}\frac{\mathrm{1}\:+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{2}{dx}}{\mathrm{2}−{a}\:−{acos}\left(\mathrm{2}{x}\right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dt}}{\mathrm{2}−{a}\:−{a}\:{cost}}\:{and}\:{the}\:{ch}.{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}\:{give} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{2}−{a}−{a}\:\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{2}−{a}\right)\left(\mathrm{1}+{u}^{\mathrm{2}} \right)−{a}\left(\mathrm{1}−{u}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{du}}{\mathrm{2}−{a}\:+\left(\mathrm{2}−{a}\right){u}^{\mathrm{2}} \:−{a}\:+{au}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{\mathrm{2}{du}}{\mathrm{2}−\mathrm{2}{a}\:+\mathrm{2}{u}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{{u}^{\mathrm{2}} \:−{a}+\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}−{a}}\:{the}\:{ch}.{u}=\sqrt{\mathrm{1}−{a}}\:{x}\:{give} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\sqrt{\mathrm{1}−{a}}\:{dx}}{\left(\mathrm{1}−{a}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{a}}}\:\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${f}\left({a}\right)=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{1}−{a}}}\:\:. \\ $$
Answered by sma3l2996 last updated on 09/Feb/18
$${t}={tanx}\Rightarrow{dx}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{1}−{a}×\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }}×\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}−{a}}=\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{\left(\mathrm{1}−{a}\right)\left(\left(\frac{{t}}{\:\sqrt{\mathrm{1}−{a}}}\right)^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$${t}=\sqrt{\mathrm{1}−{a}}{u}\Rightarrow{dt}=\sqrt{\mathrm{1}−{a}}{du} \\ $$$${f}\left({a}\right)=\frac{\sqrt{\mathrm{1}−{a}}}{\mathrm{1}−{a}}\int_{\mathrm{0}} ^{\infty} \frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\sqrt{\mathrm{1}−{a}}}{\mathrm{1}−{a}}\left[{arctanu}\right]_{\mathrm{0}} ^{+\infty} \\ $$$${f}\left({a}\right)=\frac{\sqrt{\mathrm{1}−{a}}}{\mathrm{1}−{a}}×\frac{\pi}{\mathrm{2}} \\ $$