Menu Close

let-give-a-lt-1-find-the-value-of-f-a-0-pi-2-dx-1-acos-2-x-




Question Number 29446 by prof Abdo imad last updated on 08/Feb/18
let give a<1 find the value of  f(a)= ∫_0 ^(π/2)   (dx/(1−acos^2 x)).
letgivea<1findthevalueoff(a)=0π2dx1acos2x.
Commented by prof Abdo imad last updated on 07/Mar/18
f(a)=∫_0 ^(π/2)    (dx/(1−a((1 +cos(2x))/2)))=∫_0 ^(π/2)   ((2dx)/(2−a −acos(2x)))  = ∫_0 ^π     (dt/(2−a −a cost)) and the ch.tan((t/2))=u give  f(a)= ∫_0 ^∞     (1/(2−a−a ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^∞      ((2du)/((2−a)(1+u^2 )−a(1−u^2 )))  =∫_0 ^∞    ((2du)/(2−a +(2−a)u^2  −a +au^2 ))  =∫_0 ^∞       ((2du)/(2−2a +2u^2 )) =∫_0 ^∞   (du/(u^2  −a+1))  =∫_0 ^∞     (du/(u^2 +1−a)) the ch.u=(√(1−a)) x give  f(a)=∫_0 ^∞    (((√(1−a)) dx)/((1−a)(1+x^2 )))=(1/( (√(1−a)))) (π/2) ⇒  f(a)= (π/(2(√(1−a))))  .
f(a)=0π2dx1a1+cos(2x)2=0π22dx2aacos(2x)=0πdt2aacostandthech.tan(t2)=ugivef(a)=012aa1u21+u22du1+u2=02du(2a)(1+u2)a(1u2)=02du2a+(2a)u2a+au2=02du22a+2u2=0duu2a+1=0duu2+1athech.u=1axgivef(a)=01adx(1a)(1+x2)=11aπ2f(a)=π21a.
Answered by sma3l2996 last updated on 09/Feb/18
t=tanx⇒dx=(dt/(1+t^2 ))  f(a)=∫_0 ^(+∞) (1/(1−a×(1/(1+t^2 ))))×(dt/(1+t^2 ))  =∫_0 ^(+∞) (dt/(t^2 +1−a))=∫_0 ^(+∞) (dt/((1−a)(((t/( (√(1−a)))))^2 +1)))  t=(√(1−a))u⇒dt=(√(1−a))du  f(a)=((√(1−a))/(1−a))∫_0 ^∞ (du/(u^2 +1))=((√(1−a))/(1−a))[arctanu]_0 ^(+∞)   f(a)=((√(1−a))/(1−a))×(π/2)
t=tanxdx=dt1+t2f(a)=0+11a×11+t2×dt1+t2=0+dtt2+1a=0+dt(1a)((t1a)2+1)t=1audt=1aduf(a)=1a1a0duu2+1=1a1a[arctanu]0+f(a)=1a1a×π2

Leave a Reply

Your email address will not be published. Required fields are marked *