Menu Close

let-give-A-p-0-pi-t-p-cos-nx-with-nand-p-from-N-1-find-a-relation-between-A-p-and-A-p-2-2-find-arelation-between-A-2p-and-A-2p-2-3-find-a-relation-betweer-A-2p-1-and-A-2p




Question Number 28071 by abdo imad last updated on 20/Jan/18
let give  A_p = ∫_0 ^π  t^p  cos(nx)  with nand p from N  1) find a relation between  A_p  and A_(p−2)   2) find arelation between  A_(2p)   and A_(2p−2)   3) find a relation?betweer A_(2p+1)  and  A_(2p−1)   3) cslculat  A_(0 ) , A_1 , A_2  , A_2 .
letgiveAp=0πtpcos(nx)withnandpfromN1)findarelationbetweenApandAp22)findarelationbetweenA2pandA2p23)findarelation?betweerA2p+1andA2p13)cslculatA0,A1,A2,A2.
Commented by abdo imad last updated on 26/Jan/18
let integrate by parts  1)A_p = [(1/n)t^p sin(nt)]_0 ^π  − ∫_0 ^π  (p/n)t^(p−1) sin(nt)dx  =−(p/n) ∫_0 ^π  t^(p−1)  sin(nt)dt  =−(p/n)( [((−1)/n) t^(p−1) cos(nt)]_0 ^π   −∫_0 ^π −((p−1)/n) t^(p−2)  cos(nt)dt )  =−(p/n)( ((−π^(p−1) (−1)^n )/n) +((p−1)/n) ∫_0 ^π  t^(p−2)  cos(nt)dt)  =(p/n^2 ) π^(p−1) (−1)^n   −((p(p−1))/n^2 ) A_(p−2)   so  A_p =  (1/n^2 )(  p π^(p−1) (−1)^n   −p(p−1) A_(p−2))   )  2) A_(2p)  = (1/n^2 )(2p π^(2p−1) (−1)^n  −(2p)(2p−1) A_(2p−2)  )  3) A_(2p+1 ) ^(               ) = (1/n^(2 ) )((2p+1)π^(2p) (−1)^n  −2p(2p+1) A_(2p−1) )  4) A_0   = ∫_0 ^π cos(nx)dx=[(1/n) sin(nx)]_0 ^π =0  A_1 = ∫_0 ^π t cos(nt)t = [ (t/n) sin(nt)]_0 ^π  − ∫_0 ^π  (1/n)sin(nt)dt  = −(1/n) ∫_0 ^π sin(nt)dt= (1/n^2 )[ cos(nt)]_0 ^π =(1/n^2 )( (−1)^n −1)  A_(2 ) =(1/n^2 )( 2π(−1)^n   −2A_0 ) =((2π)/n^2 )(−1)^n ....be contunued...
letintegratebyparts1)Ap=[1ntpsin(nt)]0π0πpntp1sin(nt)dx=pn0πtp1sin(nt)dt=pn([1ntp1cos(nt)]0π0πp1ntp2cos(nt)dt)=pn(πp1(1)nn+p1n0πtp2cos(nt)dt)=pn2πp1(1)np(p1)n2Ap2soAp=1n2(pπp1(1)np(p1)Ap2))2)A2p=1n2(2pπ2p1(1)n(2p)(2p1)A2p2)3)A2p+1=1n2((2p+1)π2p(1)n2p(2p+1)A2p1)4)A0=0πcos(nx)dx=[1nsin(nx)]0π=0A1=0πtcos(nt)t=[tnsin(nt)]0π0π1nsin(nt)dt=1n0πsin(nt)dt=1n2[cos(nt)]0π=1n2((1)n1)A2=1n2(2π(1)n2A0)=2πn2(1)n.becontunued
Commented by abdo imad last updated on 26/Jan/18
A_3 = (1/n^2 )( 3 π^2 (−1)^n  −6 A_1 )  = (1/n^2 )( 3 π^2 (−1)^n  −(6/n^2 )( (−1)^n −1))  =((3 π^2 )/n^2 )(−1)^n   −(6/n^4 )( (−1)^n −1).
A3=1n2(3π2(1)n6A1)=1n2(3π2(1)n6n2((1)n1))=3π2n2(1)n6n4((1)n1).
Commented by abdo imad last updated on 26/Jan/18
A_p = ∫_0 ^π  t^p cos(nt)dt.
Ap=0πtpcos(nt)dt.

Leave a Reply

Your email address will not be published. Required fields are marked *