Question Number 28071 by abdo imad last updated on 20/Jan/18
$${let}\:{give}\:\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}} \:{cos}\left({nx}\right)\:\:{with}\:{nand}\:{p}\:{from}\:{N} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{relation}\:{between}\:\:{A}_{{p}} \:{and}\:{A}_{{p}−\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{arelation}\:{between}\:\:{A}_{\mathrm{2}{p}} \:\:{and}\:{A}_{\mathrm{2}{p}−\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{a}\:{relation}?{betweer}\:{A}_{\mathrm{2}{p}+\mathrm{1}} \:{and}\:\:{A}_{\mathrm{2}{p}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{cslculat}\:\:{A}_{\mathrm{0}\:} ,\:{A}_{\mathrm{1}} ,\:{A}_{\mathrm{2}} \:,\:{A}_{\mathrm{2}} . \\ $$
Commented by abdo imad last updated on 26/Jan/18
$${let}\:{integrate}\:{by}\:{parts} \\ $$$$\left.\mathrm{1}\right){A}_{{p}} =\:\left[\frac{\mathrm{1}}{{n}}{t}^{{p}} {sin}\left({nt}\right)\right]_{\mathrm{0}} ^{\pi} \:−\:\int_{\mathrm{0}} ^{\pi} \:\frac{{p}}{{n}}{t}^{{p}−\mathrm{1}} {sin}\left({nt}\right){dx} \\ $$$$=−\frac{{p}}{{n}}\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}−\mathrm{1}} \:{sin}\left({nt}\right){dt} \\ $$$$=−\frac{{p}}{{n}}\left(\:\left[\frac{−\mathrm{1}}{{n}}\:{t}^{{p}−\mathrm{1}} {cos}\left({nt}\right)\right]_{\mathrm{0}} ^{\pi} \:\:−\int_{\mathrm{0}} ^{\pi} −\frac{{p}−\mathrm{1}}{{n}}\:{t}^{{p}−\mathrm{2}} \:{cos}\left({nt}\right){dt}\:\right) \\ $$$$=−\frac{{p}}{{n}}\left(\:\frac{−\pi^{{p}−\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} }{{n}}\:+\frac{{p}−\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}−\mathrm{2}} \:{cos}\left({nt}\right){dt}\right) \\ $$$$=\frac{{p}}{{n}^{\mathrm{2}} }\:\pi^{{p}−\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \:\:−\frac{{p}\left({p}−\mathrm{1}\right)}{{n}^{\mathrm{2}} }\:{A}_{{p}−\mathrm{2}} \:\:{so} \\ $$$${A}_{{p}} =\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\:{p}\:\pi^{{p}−\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \:\:−{p}\left({p}−\mathrm{1}\right)\:{A}_{\left.{p}−\mathrm{2}\right)} \:\:\right) \\ $$$$\left.\mathrm{2}\right)\:{A}_{\mathrm{2}{p}} \:=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\mathrm{2}{p}\:\pi^{\mathrm{2}{p}−\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \:−\left(\mathrm{2}{p}\right)\left(\mathrm{2}{p}−\mathrm{1}\right)\:{A}_{\mathrm{2}{p}−\mathrm{2}} \:\right) \\ $$$$\left.\mathrm{3}\right)\:{A}_{\mathrm{2}{p}+\mathrm{1}\:} ^{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}\:} }\left(\left(\mathrm{2}{p}+\mathrm{1}\right)\pi^{\mathrm{2}{p}} \left(−\mathrm{1}\right)^{{n}} \:−\mathrm{2}{p}\left(\mathrm{2}{p}+\mathrm{1}\right)\:{A}_{\mathrm{2}{p}−\mathrm{1}} \right) \\ $$$$\left.\mathrm{4}\right)\:{A}_{\mathrm{0}} \:\:=\:\int_{\mathrm{0}} ^{\pi} {cos}\left({nx}\right){dx}=\left[\frac{\mathrm{1}}{{n}}\:{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} =\mathrm{0} \\ $$$${A}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\pi} {t}\:{cos}\left({nt}\right){t}\:=\:\left[\:\frac{{t}}{{n}}\:{sin}\left({nt}\right)\right]_{\mathrm{0}} ^{\pi} \:−\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}}{{n}}{sin}\left({nt}\right){dt} \\ $$$$=\:−\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\pi} {sin}\left({nt}\right){dt}=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left[\:{cos}\left({nt}\right)\right]_{\mathrm{0}} ^{\pi} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right) \\ $$$${A}_{\mathrm{2}\:} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}} \:\:−\mathrm{2}{A}_{\mathrm{0}} \right)\:=\frac{\mathrm{2}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} ….{be}\:{contunued}… \\ $$
Commented by abdo imad last updated on 26/Jan/18
$${A}_{\mathrm{3}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{3}\:\pi^{\mathrm{2}} \left(−\mathrm{1}\right)^{{n}} \:−\mathrm{6}\:{A}_{\mathrm{1}} \right) \\ $$$$=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{3}\:\pi^{\mathrm{2}} \left(−\mathrm{1}\right)^{{n}} \:−\frac{\mathrm{6}}{{n}^{\mathrm{2}} }\left(\:\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{3}\:\pi^{\mathrm{2}} }{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \:\:−\frac{\mathrm{6}}{{n}^{\mathrm{4}} }\left(\:\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right). \\ $$
Commented by abdo imad last updated on 26/Jan/18
$${A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{t}^{{p}} {cos}\left({nt}\right){dt}. \\ $$