Menu Close

let-give-a-sequence-of-real-numbets-positif-a-i-1-i-n-1-prove-that-i-1-n-a-i-2-n-i-1-n-a-i-2-2-let-put-H-n-k-1-n-1-k-and-w-n-H-n-2-n-prove-that-the-sequence-




Question Number 33847 by prof Abdo imad last updated on 26/Apr/18
 let give a sequence of real numbets positif  (a_i )_(1≤i≤n)   1) prove that (Σ_(i=1) ^n  a_i )^2 ≤ n Σ_(i=1) ^n  a_i ^2   2)let put H_n =Σ_(k=1) ^n  (1/k)  and w_n = (H_n ^2 /n)  prove that the sequence w_n  is convergent .
letgiveasequenceofrealnumbetspositif(ai)1in1)provethat(i=1nai)2ni=1nai22)letputHn=k=1n1kandwn=Hn2nprovethatthesequencewnisconvergent.
Commented by prof Abdo imad last updated on 27/Apr/18
for all sequences of reals numbers positifs  (a_i )_(1≤i≤n) and (b_i )_(1≤i≤n)  we have  Σ_(i=1) ^n  a_i b_i  ≤ (Σ_(i=1) ^n a_i ^2 )^(1/2) (Σ_(i=1) ^n b_i ^2 )^(1/2)  (holder inequality)  let take b_i =1 ∀i∈[[1,n]] ⇒Σ_(i=1) ^n a_i  ≤(√n) (Σ_(i=1) ^n a_i ^2 )^(1/2) ⇒  (Σ_(i=1) ^n a_i )^2  ≤n(Σ_(i=1) ^n a_i ^2 )  2)let take  a_i = (1/i)  ∀i∈[1,n] ⇒(Σ_(i=1) ^n  (1/i))^2 ≤nΣ_(i=1) ^n (1/i^2 )  ⇒ H_n ^2  ≤ n Σ_(i=1) ^n  (1/i^2 ) ⇒ (H_n ^2 /n) ≤ Σ_(i=1) ^n  (1/i^2 ) ⇒  w_n  ≤ Σ_(i=1) ^n  (1/i^2 )  Rieman serie convergent so  (w_n ) is convergent.
forallsequencesofrealsnumberspositifs(ai)1inand(bi)1inwehavei=1naibi(i=1nai2)12(i=1nbi2)12(holderinequality)lettakebi=1i[[1,n]]i=1nain(i=1nai2)12(i=1nai)2n(i=1nai2)2)lettakeai=1ii[1,n](i=1n1i)2ni=1n1i2Hn2ni=1n1i2Hn2ni=1n1i2wni=1n1i2Riemanserieconvergentso(wn)isconvergent.

Leave a Reply

Your email address will not be published. Required fields are marked *