Menu Close

let-give-a-sequence-of-reals-a-n-n-a-n-gt-0-and-U-n-a-n-1-a-1-1-a-2-1-a-n-1-prove-that-u-n-converges-2-calculate-u-n-if-u-n-1-n-




Question Number 28617 by abdo imad last updated on 27/Jan/18
let give a sequence of reals (a_n )_n   / a_n >0  and  U_n =   (a_n /((1+a_1 )(1+a_2 )....(1+a_n )))  1) prove that Σ u_n  converges  2) calculate Σ u_n   if u_n = (1/( (√n))) .
$${let}\:{give}\:{a}\:{sequence}\:{of}\:{reals}\:\left({a}_{{n}} \right)_{{n}} \:\:/\:{a}_{{n}} >\mathrm{0}\:\:{and} \\ $$$${U}_{{n}} =\:\:\:\frac{{a}_{{n}} }{\left(\mathrm{1}+{a}_{\mathrm{1}} \right)\left(\mathrm{1}+{a}_{\mathrm{2}} \right)….\left(\mathrm{1}+{a}_{{n}} \right)} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} \:{converges} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\Sigma\:{u}_{{n}} \:\:{if}\:{u}_{{n}} =\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *