Menu Close

let-give-B-x-y-0-1-u-x-1-1-u-y-1-du-and-beta-function-and-x-0-u-x-1-e-u-du-x-gt-0-gamma-function-of-euler-1-prove-that-x-2-0-u-2x-1-e-u-2-du




Question Number 28442 by abdo imad last updated on 25/Jan/18
let give B(x,y)= ∫_0 ^1  u^(x−1) (1−u)^(y−1) du  and (beta function)  and Γ(x) =∫_0 ^∞  u^(x−1)  e^(−u)  du     (x>0)(gamma function of euler)  1) prove that    Γ(x)= 2∫_0 ^∞  u^(2x−1)  e^(−u^2  ) du .  2) prove that  B(x,y) = ((Γ(x).Γ(y))/(Γ(x+y))) .
$${let}\:{give}\:{B}\left({x},{y}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{{x}−\mathrm{1}} \left(\mathrm{1}−{u}\right)^{{y}−\mathrm{1}} {du}\:\:{and}\:\left({beta}\:{function}\right) \\ $$$${and}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{u}^{{x}−\mathrm{1}} \:{e}^{−{u}} \:{du}\:\:\:\:\:\left({x}>\mathrm{0}\right)\left({gamma}\:{function}\:{of}\:{euler}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:\:\Gamma\left({x}\right)=\:\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:{u}^{\mathrm{2}{x}−\mathrm{1}} \:{e}^{−{u}^{\mathrm{2}} \:} {du}\:. \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:{B}\left({x},{y}\right)\:=\:\frac{\Gamma\left({x}\right).\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)}\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *