Menu Close

let-give-C-and-n-1-is-the-n-me-root-of-1-simplify-A-1-p-2p-n-1-p-and-B-1-2-3-2-n-n-1-




Question Number 26997 by abdo imad last updated on 01/Jan/18
let give ξ ∈C and ξ^n =1 (ξ is the n^(me)  root of 1)  simplify  A= 1+ξ^p +ξ^(2p) +... +ξ^((n−1)p)   and B= 1+2ξ +3ξ^2 +...+nξ^(n−1) .
letgiveξCandξn=1(ξisthenmerootof1)simplifyA=1+ξp+ξ2p++ξ(n1)pandB=1+2ξ+3ξ2++nξn1.
Commented by prakash jain last updated on 01/Jan/18
A=((ξ^(np) −1)/(ξ^p −1))=(((ξ^n )^p −1)/(ξ^p −1))=0 if ξ^p ≠1  A=n if ξ^p =1
A=ξnp1ξp1=(ξn)p1ξp1=0ifξp1A=nifξp=1
Commented by abdo imad last updated on 02/Jan/18
value of A  if ξ^p =1  A= n  if ξ^p ≠1  A= Σ_(k=0) ^(n−1)  ξ^(kp)  = ((1− (ξ^p )^n )/(1−ξ^p ))  =((1−(ξ^n )^p )/(1−ξ^p )) =0  value of B  if ξ=1   B=1+2+3+....+n =((n(n+1))/2)  if ξ≠1  B= p(x) with  p(x)= 1+2x +3x^2 +....+nx^(n−1)   and x≠1 we have  ∫p(x)dx= x +x^2 +x^3  +....+x^n  +λ  λ=p(0)=1⇒p(x)= 1+x+x^2 +...+x^n   =((x^(n+1) −1)/(x−1))   ⇒p(x)=(d/dx)(((x^(n+1) −1)/(x−1)))  =(((n+1)x^n (x−1)−(x^(n+1) −1))/((x−1)^2 ))  =(((n+1)x^(n+1) −(n+1)x^n  −x^(n+1) +1)/((x−1)^2 ))  =((nx^(n+1) −(n+1)x^n +1)/((x−1)^(2 ) )) and with ξ^n =1  B=p(ξ)= ((nξ^(n+1) −(n+1)ξ +1)/((ξ−1)^2 ))  B= ((nξ −nξ +1−ξ)/((1−ξ)^2 )) ⇒B= (1/(1−ξ)) .
valueofAifξp=1A=nifξp1A=k=0n1ξkp=1(ξp)n1ξp=1(ξn)p1ξp=0valueofBifξ=1B=1+2+3+.+n=n(n+1)2ifξ1B=p(x)withp(x)=1+2x+3x2+.+nxn1andx1wehavep(x)dx=x+x2+x3+.+xn+λλ=p(0)=1p(x)=1+x+x2++xn=xn+11x1p(x)=ddx(xn+11x1)=(n+1)xn(x1)(xn+11)(x1)2=(n+1)xn+1(n+1)xnxn+1+1(x1)2=nxn+1(n+1)xn+1(x1)2andwithξn=1B=p(ξ)=nξn+1(n+1)ξ+1(ξ1)2B=nξnξ+1ξ(1ξ)2B=11ξ.
Commented by abdo imad last updated on 01/Jan/18
if ξ=1  B=((n(n+1))/2) .
ifξ=1B=n(n+1)2.

Leave a Reply

Your email address will not be published. Required fields are marked *