Question Number 28159 by abdo imad last updated on 21/Jan/18
$${let}\:{give}\:{D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]×\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:{find}\:{the}\:{value}\:{of} \\ $$$$\int\int_{{D}} \:\:\:\frac{{dxdy}}{{ycosx}\:+\mathrm{1}}\:\:. \\ $$
Commented by abdo imad last updated on 26/Jan/18
$${let}\:{put}\:\:{I}=\int\int_{{D}} \:\frac{{dxdy}}{{ycosx}\:+\mathrm{1}} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:\frac{{dy}}{{ycox}+\mathrm{1}}\right){dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\:{ln}\left({ycosx}+\mathrm{1}\right)\right]_{{y}=\mathrm{0}} ^{{y}=\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dx}}{{cosx}} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{cosx}\right)}{{cosx}}{dx}\:\:{and}\:{by}\:{fubini} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{{ycosx}\:+\mathrm{1}}\right){dy}\:{the}\:{ch}.\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{{ycosx}+\mathrm{1}}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{1}+{y}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+{y}\left(\mathrm{1}−{t}^{\left.\mathrm{2}\right)} \right.}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}−{y}\right){t}^{\mathrm{2}} +\mathrm{1}+{y}} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{1}−{y}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}}\:\:\:\:\:\:\left(\:\:\:\:\:\:{ch}.{t}=\sqrt{\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}}{u}\right) \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{1}−{y}}\:\int_{\mathrm{0}} ^{\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}} \:\:\:\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\sqrt{\:\:\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}}{du} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{1}+{y}}\:.\frac{\sqrt{\mathrm{1}+{y}}}{\:\sqrt{\mathrm{1}−{y}}}\:{artan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right)=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right) \\ $$$$=\:\frac{\mathrm{2}}{{sin}\theta}\:{arctan}\left({tan}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:\:\:\left({ch}.{y}={cos}\theta\right) \\ $$$$=\frac{\theta}{{sin}\theta}\:=\frac{{arcosy}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }} \\ $$$$\Rightarrow\:{I}=\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\frac{{arcosy}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}{dy}\:\:\:{by}\:{parts} \\ $$$${I}=\:\:\left[−{arcosy}.{arcosy}\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:−\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} −{arcosy}\:\frac{−{dy}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }} \\ $$$$\mathrm{2}{I}=\:\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} \:−\left(\frac{\pi}{\mathrm{3}}\right)^{\mathrm{2}} =\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\:\frac{\pi^{\mathrm{2}} }{\mathrm{9}}=\:\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{36}} \\ $$$${and}\:\:{I}=\:\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{72}}\:. \\ $$