Menu Close

let-give-D-0-pi-2-0-1-2-find-the-value-of-D-dxdy-ycosx-1-




Question Number 28159 by abdo imad last updated on 21/Jan/18
let give D=[0,(π/2)]×[0,(1/2)]  find the value of  ∫∫_D    ((dxdy)/(ycosx +1))  .
letgiveD=[0,π2]×[0,12]findthevalueofDdxdyycosx+1.
Commented by abdo imad last updated on 26/Jan/18
let put  I=∫∫_D  ((dxdy)/(ycosx +1))  I= ∫_0 ^(π/2) ( ∫_0 ^(1/2)     (dy/(ycox+1)))dx = ∫_0 ^(π/2) [ ln(ycosx+1)]_(y=0) ^(y=(1/2)) (dx/(cosx))  = ∫_0 ^(π/2) ((ln(1+(1/2)cosx))/(cosx))dx  and by fubini  I= ∫_0 ^(1/2) ( ∫_0 ^(π/2)    (dx/(ycosx +1)))dy the ch. tan((x/2))=t give  ∫_0 ^(π/2)   (dx/(ycosx+1))= ∫_0 ^1  (1/(1+y((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^1       ((2dt)/(1+t^2  +y(1−t^(2)) ))= ∫_0 ^1      ((2dt)/((1−y)t^2 +1+y))  = (2/(1−y)) ∫_0 ^1     (dt/(t^2  +((1+y)/(1−y))))      (      ch.t=(√((1+y)/(1−y)))u)  = (2/(1−y)) ∫_0 ^(√((1−y)/(1+y)))        (1/(((1+y)/(1−y))(1+u^2 )))(√(  ((1+y)/(1−y))))du  = (2/(1+y)) .((√(1+y))/( (√(1−y)))) artan((√((1−y)/(1+y))))= (2/( (√(1−y^2 )))) arctan((√((1−y)/(1+y))))  = (2/(sinθ)) arctan(tan((θ/2)))   (ch.y=cosθ)  =(θ/(sinθ)) =((arcosy)/( (√(1−y^2 ))))  ⇒ I= ∫_0 ^(1/2)    ((arcosy)/( (√(1−y^2 ))))dy   by parts  I=  [−arcosy.arcosy]_0 ^(1/2)  − ∫_0 ^(1/2) −arcosy ((−dy)/( (√(1−y^2 ))))  2I= ((π/2))^2  −((π/3))^2 = (π^2 /4)− (π^2 /9)= ((5π^2 )/(36))  and  I= ((5π^2 )/(72)) .
letputI=Ddxdyycosx+1I=0π2(012dyycox+1)dx=0π2[ln(ycosx+1)]y=0y=12dxcosx=0π2ln(1+12cosx)cosxdxandbyfubiniI=012(0π2dxycosx+1)dythech.tan(x2)=tgive0π2dxycosx+1=0111+y1t21+t22dt1+t2=012dt1+t2+y(1t2)=012dt(1y)t2+1+y=21y01dtt2+1+y1y(ch.t=1+y1yu)=21y01y1+y11+y1y(1+u2)1+y1ydu=21+y.1+y1yartan(1y1+y)=21y2arctan(1y1+y)=2sinθarctan(tan(θ2))(ch.y=cosθ)=θsinθ=arcosy1y2I=012arcosy1y2dybypartsI=[arcosy.arcosy]012012arcosydy1y22I=(π2)2(π3)2=π24π29=5π236andI=5π272.

Leave a Reply

Your email address will not be published. Required fields are marked *