Menu Close

let-give-f-t-cos-t-2pi-periodic-with-t-pi-pi-and-R-Z-1-developp-f-at-fourier-serie-and-prove-that-cotan-pi-1-pi-n-1-2-pi-2-n-2-2-let-x-0-pi-ant-g-t-cotant-




Question Number 29844 by abdo imad last updated on 12/Feb/18
let give f_α (t)=cos(αt)  2π periodic with t ∈[−π,π]and  α∈ R−Z  1) developp f_α   at fourier serie and prove that  cotan(απ)= (1/(απ))  +Σ_(n=1) ^∞   ((2α)/(π(α^2 −n^2 )))  2)let x∈]0,π[ ant g(t)=cotant −(1/t)  if t∈]0,x]andg(0)=0  prove that g is continue in[0,x] and find ∫_0 ^x g(t)dt  3)prove that ∀ t∈[0,x] g(t)=2t Σ_(n=1) ^∞    (1/(t^2 −n^2 π^(24) ))  4) chow that  Π_(n=1) ^∞  (1−(x^2 /(n^2 π^2 )))= ((sinx)/x)  and for x∈]−π,π[  sinx=x Π_(n=1) ^∞  (1−(x^2 /(n^2 π^2 )))  .
letgivefα(t)=cos(αt)2πperiodicwitht[π,π]andαRZ1)developpfαatfourierserieandprovethatcotan(απ)=1απ+n=12απ(α2n2)2)letx]0,π[antg(t)=cotant1tift]0,x]andg(0)=0provethatgiscontinuein[0,x]andfind0xg(t)dt3)provethatt[0,x]g(t)=2tn=11t2n2π244)chowthatn=1(1x2n2π2)=sinxxandforx]π,π[sinx=xn=1(1x2n2π2).

Leave a Reply

Your email address will not be published. Required fields are marked *