Menu Close

let-give-f-x-0-1-t-e-1-ix-t-dt-calculate-f-x-prove-that-R-x-i-2-f-x-2-then-find-0-e-t-2-dt-




Question Number 27496 by abdo imad last updated on 07/Jan/18
let give f(x)= ∫_0 ^∝   (1/( (√t))) e^(−(1+ix)t) dt  calculate f^′ (x) prove that ∃λ∈R/(x+i)^2  (f(x))^2 = λ  then find  ∫_0 ^∝   e^(−t^2 ) dt .
$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{1}}{\:\sqrt{{t}}}\:{e}^{−\left(\mathrm{1}+{ix}\right){t}} {dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:{prove}\:{that}\:\exists\lambda\in{R}/\left({x}+{i}\right)^{\mathrm{2}} \:\left({f}\left({x}\right)\right)^{\mathrm{2}} =\:\lambda \\ $$$${then}\:{find}\:\:\int_{\mathrm{0}} ^{\propto} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *