Menu Close

let-give-f-x-0-ln-1-x-t-2-dt-with-x-lt-1-find-a-simple-form-of-f-x-




Question Number 32705 by caravan msup abdo. last updated on 31/Mar/18
let give  f(x)= ∫_0 ^∞   ln(1 +(x/t^2 ))dt with ∣x∣<1  find a simple form of f(x).
letgivef(x)=0ln(1+xt2)dtwithx∣<1findasimpleformoff(x).
Commented by abdo imad last updated on 03/Apr/18
f^′ (x) =∫_0 ^∞      (1/(t^2 (1+(x/t^2 ))))dt  =∫_0 ^∞    (dt/(x +t^2 ))  case1   0<x<1  f^′ (x) =_(t=(√x) u)   ∫_0 ^∞     (1/(x(1+t^2 ))) (√x) du  = (π/(2(√x)))  ⇒ f(x)= π(√x) +λ  but λ =f(0)=0 ⇒f(x)=π(√x)  −1<x<0  ⇒ f^′ (x) =∫_0 ^∞   (dt/(t^2  −((√(−x)))^2 ))  = (1/(2(√(−x)))) ∫_0 ^∞  (  (1/(t−(√x))) −(1/(t +(√(−x)))))dt  = (1/(2(√(−x)))) [ ln∣ ((t−(√(−x)))/(t+(√(−x)))) ∣]_0 ^∞  =0
f(x)=01t2(1+xt2)dt=0dtx+t2case10<x<1f(x)=t=xu01x(1+t2)xdu=π2xf(x)=πx+λbutλ=f(0)=0f(x)=πx1<x<0f(x)=0dtt2(x)2=12x0(1tx1t+x)dt=12x[lntxt+x]0=0

Leave a Reply

Your email address will not be published. Required fields are marked *