Menu Close

let-give-f-x-0-pi-2-ln-1-xtant-tant-dt-find-a-simple-form-of-f-x-2-calculate-0-pi-2-ln-1-2tant-tant-dt-




Question Number 32708 by abdo imad last updated on 31/Mar/18
let give f(x)=∫_0 ^(π/2)  ((ln(1+xtant))/(tant))dt  find a simple form of f(x)  2)calculate ∫_0 ^(π/2)    ((ln(1+2tant))/(tant))dt .
letgivef(x)=0π2ln(1+xtant)tantdtfindasimpleformoff(x)2)calculate0π2ln(1+2tant)tantdt.
Commented by abdo imad last updated on 03/Apr/18
we have f^′ (x) = ∫_0 ^(π/2)   (∂/∂x)(  ((ln(1+xtant))/(tant)))dt  = ∫_0 ^(π/2)      ((tant)/((1+xtant)tant))dt = ∫_0 ^(π/2)     (dt/(1+xtant))  = ∫_0 ^(π/2)     (dt/(1+x((sint)/(cost)))) = ∫_0 ^(π/2)      ((cost)/(cost +xsint)) dt  .ch.tan((t/2))=u  give f^, (x) = ∫_0 ^1  (((1−u^2 )/(1+u^2 ))/(((1−u^2 )/(1+u^2 )) +x (((2u))/(1+u^2 )))) ((2du)/(1+u^2 ))  f^′ (x) =∫_0 ^1    ((2(1−u^2 ))/((1+u^2 )( 1−u^2  +2xu)))du  = ∫_0 ^1     ((2(u^2 −1))/((1+u^2 )(u^2  −2xu −1)))du let decompose  F(u) =  ((2(u^2 −1))/((1+u^2 )( u^2  −2xu −1)))  u^2  −2xu −1 ⇒Δ^′  =x^2  +1 ⇒ u_1 =x +(√(1+x^2 ))  u_2 = x−(√(1+x^2  ))    F(u) =  (a/(u−u_1 ))  +(b/(u−u_2 ))  + ((cu +d)/(u^2  +1)) =((2(u^2 −1))/((u −u_1 )(u−u_2 )(u^2  +1)))  a = ((2(u_1 ^2  −1))/((u_1  −u_2 )(u_1 ^2  +1))) = ((2( (x+(√(1+x^2 )))^2  −1))/(2(√(1+x^2 ( (x+(√(1+x^2 )))^2  +1)))))  b = ((2( u_2 ^2  −1))/((u_2  −u_1 )(u_2 ^2  +1))) =  ((2 ( (x−(√(1+x^2 )) )^2  −1))/(−2(√(2+x^2 ( ( x−(√(1+x^2 )^2  )) +1)))))   be continued....
wehavef(x)=0π2x(ln(1+xtant)tant)dt=0π2tant(1+xtant)tantdt=0π2dt1+xtant=0π2dt1+xsintcost=0π2costcost+xsintdt.ch.tan(t2)=ugivef,(x)=011u21+u21u21+u2+x(2u)1+u22du1+u2f(x)=012(1u2)(1+u2)(1u2+2xu)du=012(u21)(1+u2)(u22xu1)duletdecomposeF(u)=2(u21)(1+u2)(u22xu1)u22xu1Δ=x2+1u1=x+1+x2u2=x1+x2F(u)=auu1+buu2+cu+du2+1=2(u21)(uu1)(uu2)(u2+1)a=2(u121)(u1u2)(u12+1)=2((x+1+x2)21)21+x2((x+1+x2)2+1)b=2(u221)(u2u1)(u22+1)=2((x1+x2)21)22+x2((x1+x2)2+1)becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *