Menu Close

let-give-f-x-1-2x-2-3x-1-1-find-f-n-x-2-find-f-n-0-3-if-f-x-a-n-x-n-calculate-the-sequence-a-n-




Question Number 33126 by prof Abdo imad last updated on 10/Apr/18
let give f(x)= (1/(2x^2  −3x+1))  1) find  f^((n)) (x)  2) find f^((n)) (0)  3) if    f(x)=Σ a_n  x^n   calculate the sequence a_n
letgivef(x)=12x23x+11)findf(n)(x)2)findf(n)(0)3)iff(x)=Σanxncalculatethesequencean
Commented by prof Abdo imad last updated on 12/Apr/18
1)poles of f?   2x^2  −3x+1 =0  Δ =9 −4 ×2 =1 ⇒x_1 =((3 +1)/4) =1  x_2 = ((3−1)/4) =(1/2) ⇒ f(x)=  (1/(2(x−1)(x−(1/2))))  =  (a/(x−1)) +(b/(x−(1/2)))  a= (1/(2.(1/2))) =1   ,b= (1/(2.(−(1/2)))) =−1 ⇏  f(x)=  (1/(x−1))  −(1/(x−(1/2))) ⇒  f^((n)) (x)= (((−1)^n  n!)/((x−1)^(n+1) )) − (((−1)^n  n!)/((x−(1/2))^(n+1) )) ⇒  2)f^((n)) (0)  = (((−1)^n  n!)/((−1)^(n+1) ))  −(((−1)^n n!)/((−(1/2))^(n+1) ))  =−(n!)  − (((−1)^n  n!)/((−1)^(n+1) )) 2^(n+1)   =n! 2^(n+1)  −n!  =n!( 2^(n+1)  −1)  3) we have f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   ⇒ f(x)= Σ_(n=0) ^∞  (2^(n+1)  −1)x^n   .
1)polesoff?2x23x+1=0Δ=94×2=1x1=3+14=1x2=314=12f(x)=12(x1)(x12)=ax1+bx12a=12.12=1,b=12.(12)=1f(x)=1x11x12f(n)(x)=(1)nn!(x1)n+1(1)nn!(x12)n+12)f(n)(0)=(1)nn!(1)n+1(1)nn!(12)n+1=(n!)(1)nn!(1)n+12n+1=n!2n+1n!=n!(2n+11)3)wehavef(x)=n=0f(n)(0)n!xnf(x)=n=0(2n+11)xn.

Leave a Reply

Your email address will not be published. Required fields are marked *