Menu Close

let-give-F-x-1-x-2-1-prove-that-P-n-Z-n-x-F-n-x-P-n-x-1-x-2-n-find-a-relation-of-recurence-between-the-P-n-prove-that-all-roots-of-P-n-are-reals-and-smples-




Question Number 28364 by abdo imad last updated on 24/Jan/18
let give F(x) = (1/(x^2 +1)) prove that ∃ P_n ∈ Z_n [x] /  F^((n)) (x)=  ((P_n (x))/((1+x^2 )^n ))   find a relation of recurence between   the  P_n  .prove that all roots of P_n  are reals and smples.
$${let}\:{give}\:{F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:{prove}\:{that}\:\exists\:{P}_{{n}} \in\:{Z}_{{n}} \left[{x}\right]\:/ \\ $$$${F}^{\left({n}\right)} \left({x}\right)=\:\:\frac{{P}_{{n}} \left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:\:{find}\:{a}\:{relation}\:{of}\:{recurence}\:{between}\: \\ $$$${the}\:\:{P}_{{n}} \:.{prove}\:{that}\:{all}\:{roots}\:{of}\:{P}_{{n}} \:{are}\:{reals}\:{and}\:{smples}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *