Menu Close

let-give-f-x-2-x-1-3x-find-f-1-x-and-f-1-x-




Question Number 29159 by abdo imad last updated on 04/Feb/18
let give f(x)=2(√(x−1)) +3x   find f^(−1) (x) and (f^(−1) )^′ (x) .
letgivef(x)=2x1+3xfindf1(x)and(f1)(x).
Commented by abdo imad last updated on 08/Feb/18
f(x)=y ⇔ x=f^(−1) (y) ⇔ 2(√(x−1)) +3x=y  ⇔2(√(x−1)) =y−3x ⇔4(x−1)=(y−3x)^2  with the cond.  x−1≥0 andy−3x≥0 ⇔ 4x−4=y^2  −6xy +9x^2   ⇔ 9x^2  −6xy −4x +y^2 +4=0  ⇔ 9x^2  −2(3y+2)x +y^2 +4=0  Δ^′ = (3y+2)^2  −9(y^2 +4)=9y^2 +12y +4 −9y^2 −36  =12y −32 =4(3y −8) the equ.have roots⇔ y≥(8/3) in this  case  x_1 =((3y+2 +2(√(3y−8)))/9) and x_2 =((3y+2 −2(√(3y−8)))/9)  we must have 3x−y≤0 and x≥1  3x_1  −y=((3y +2 +2(√(3y−8)) −3y)/3) =((2+2(√(3y−8)))/3) >0 (x_1 to  eliminate) so f^(−1) (x)=(1/9)(3x+2 −2(√(3x−8)) ) and for  x>(3/8)  (f^(−1) )^′ (x)=(1/9)(3 −2 (3/(2(√(3x−8))))) ⇒  (f^(−1) )^′ (x)=(1/3)( 1− (1/( (√(3x−8))))) .
f(x)=yx=f1(y)2x1+3x=y2x1=y3x4(x1)=(y3x)2withthecond.x10andy3x04x4=y26xy+9x29x26xy4x+y2+4=09x22(3y+2)x+y2+4=0Δ=(3y+2)29(y2+4)=9y2+12y+49y236=12y32=4(3y8)theequ.haverootsy83inthiscasex1=3y+2+23y89andx2=3y+223y89wemusthave3xy0andx13x1y=3y+2+23y83y3=2+23y83>0(x1toeliminate)sof1(x)=19(3x+223x8)andforx>38(f1)(x)=19(32323x8)(f1)(x)=13(113x8).

Leave a Reply

Your email address will not be published. Required fields are marked *