Menu Close

let-give-f-x-x-1-2-x-2-x-1-2-x-2-1-simlify-f-x-2-solve-inside-N-2-the-equation-f-x-y-




Question Number 29161 by abdo imad last updated on 04/Feb/18
let give f(x)=(√(x−1+2(√(x−2))))  +(√(x−1−2(√(x−2))))  1) simlify f(x)  2) solve inside N^2  the equation f(x)=y.
letgivef(x)=x1+2x2+x12x21)simlifyf(x)2)solveinsideN2theequationf(x)=y.
Commented by abdo imad last updated on 06/Feb/18
we musthave x≥2 and for that f(x)=(√(x−2 +2(√(x−2))+1))  +(√(x−2−2(√(x−2))+1))  =(√(((√(x−2))+1)^2 )) +(√(((√(x−2))−1)^2 ))  =∣(√(x−2))+1∣ +∣(√(x−2))−1∣=(√(x−2)) +1 +∣(√(x−2))−1∣ so  if x≥3   f(x)=(√(x−2))+1 +(√(x−2))−1=2(√(x−2))  if 2≤x≤3  f(x)= (√(x−2))+1 +1−(√(x−2)) =2  2)for x integr and x≥3 f(x)=y ⇔y=2(√(x−2))  ⇒y^2 =4(x−2)⇒y even ⇒y=2k ,kintegr  ⇒2k=4(x−2)⇒k=2(x−2) ⇒k=2p p from N⇒  x−2=p and y=4p ⇒x=p+2 and y=4p .
wemusthavex2andforthatf(x)=x2+2x2+1+x22x2+1=(x2+1)2+(x21)2=∣x2+1+x21∣=x2+1+x21soifx3f(x)=x2+1+x21=2x2if2x3f(x)=x2+1+1x2=22)forxintegrandx3f(x)=yy=2x2y2=4(x2)yeveny=2k,kintegr2k=4(x2)k=2(x2)k=2ppfromNx2=pandy=4px=p+2andy=4p.
Answered by $@ty@m last updated on 05/Feb/18
let (√(x−2))=y⇒y^2 =x−2  (√(x−1+2(√(x−2))))  +(√(x−1−2(√(x−2))))  =(√(y^2 +2−1+2y))+(√(y^2 +2−1−2y))  =(√(y^2 +1+2y))+(√(y^2 +1−2y))  =y+1+y−1  =2y  =2(√(x−2))
letx2=yy2=x2x1+2x2+x12x2=y2+21+2y+y2+212y=y2+1+2y+y2+12y=y+1+y1=2y=2x2

Leave a Reply

Your email address will not be published. Required fields are marked *