Menu Close

let-give-f-x-x-2-cos-1-x-2-if-x-0-1-but-its-derivative-f-is-not-integrable-on-0-1-




Question Number 29554 by abdo imad last updated on 09/Feb/18
let give f(x)= x^2 cos((1/x^2 )) if x∈]0,1] but its derivative f^′   is not integrable on ]0,1].
letgivef(x)=x2cos(1x2)ifx]0,1]butitsderivativefisnotintegrableon]0,1].
Commented by abdo imad last updated on 14/Feb/18
we have lim_(x→0) f(x)=0 because ∣x^2 cos((1/x))∣≤ x^2   lim_(x→0)   ((f(x))/x) =lim_(x→0)  xcos((1/x))=0 so f is derivable on  [0,1]  from another side f^′ (x)= 2xcos((1/x^2 ))−x^2 (−2x^(−3) )sin((1/x^2 ))  =2xcos((1/x^2 )) −(2/x) sin((1/x^(2)) ))and_0_    ∫_0 ^1  f^′ (x)dx = 2 ∫_0 ^1   xcos((1/x^2 ))dx −2∫_0 ^1  (1/x)sin((1/x^2 )) ch (1/x)=t  ∫_0 ^1  xcos((1/x^2 ))dx =−∫_1 ^(+∞) (1/t)cos(t^2 )(−(dt/t^2 ))  =∫_1 ^(+∞)  ((cos(t^2 ))/t^3 )dt integral conv.and  ∫_0 ^1    (1/x) sin((1/x^2 ))=−∫_1 ^(+∞)  t sint^2  ((−dt)/t^2 )= ∫_1 ^(+∞)  ((sin(t^2 ))/t)dt and  this integral is?divergent .
wehavelimx0f(x)=0becausex2cos(1x)∣⩽x2limx0f(x)x=limx0xcos(1x)=0sofisderivableon[0,1]fromanothersidef(x)=2xcos(1x2)x2(2x3)sin(1x2)=2xcos(1x2)2xsin(1x2))and001f(x)dx=201xcos(1x2)dx2011xsin(1x2)ch1x=t01xcos(1x2)dx=1+1tcos(t2)(dtt2)=1+cos(t2)t3dtintegralconv.and011xsin(1x2)=1+tsint2dtt2=1+sin(t2)tdtandthisintegralis?divergent.

Leave a Reply

Your email address will not be published. Required fields are marked *