Menu Close

let-give-f-x-x-2-x-1-1-find-f-1-x-inverse-of-f-x-2-calculate-f-1-x-




Question Number 32283 by abdo imad last updated on 22/Mar/18
let give f(x)=x+2 −(√(x+1))  1) find f^(−1) (x) inverse of f(x)  2) calculate (f^(−1) )^′ (x) .
letgivef(x)=x+2x+11)findf1(x)inverseoff(x)2)calculate(f1)(x).
Commented by abdo imad last updated on 24/Mar/18
D_f =[−1,+∞[  f(x)=y ⇔ y=x+2 −(√(x+1)) ⇔  (x+2 −y)^2  =x+1 ⇒ (x+2)^2  −2y(x+2) +y^2  −x−1=0  ⇒ x^2  +4x +4 −2yx −4y +y^2  −x−1 =0⇒  x^2  +(3−2y)x +y^2  −4y +3 =0  Δ = (3−2y)^2  −4(y^2  −4y +3)=  =9 −12y +4y^2  −4y^2  +16y −12 =4y −3  x_1 = ((−3+2y +(√( 4y−3)))/2) and  x_2 =((−3 +2y −(√(4h−3)))/2)  we must have  x+2−y ≥0 let verify  x_2  +2 −y =((−3 +2y −(√(4y −3)))/2) +2−y  =((−3 +2y −(√(4y−3)) +4−2y)/2) = ((1−y −(√(4y−3)))/2) <0 so the  soution is x_1   and f^(−1) (x) =((2x +(√(4x−3)) −3)/2)  f^(−1) (x) = x +(1/2)(√(4x−3)) −(3/2) ⇒  (f^(−1) )^′ (x) = 1+ (1/2) (4/(2(√(4x−3)))) = 1+  (1/( (√(4x−3)))) . with x>(3/4) .
Df=[1,+[f(x)=yy=x+2x+1(x+2y)2=x+1(x+2)22y(x+2)+y2x1=0x2+4x+42yx4y+y2x1=0x2+(32y)x+y24y+3=0Δ=(32y)24(y24y+3)==912y+4y24y2+16y12=4y3x1=3+2y+4y32andx2=3+2y4h32wemusthavex+2y0letverifyx2+2y=3+2y4y32+2y=3+2y4y3+42y2=1y4y32<0sothesoutionisx1andf1(x)=2x+4x332f1(x)=x+124x332(f1)(x)=1+12424x3=1+14x3.withx>34.
Answered by MJS last updated on 22/Mar/18
x=y+2−(√(y+1))  (√(y+1))=−x+y+2  y+1=y^2 +2(2−x)y+(2−x)^2   y^2 +(3−2x)y+(x^2 −4x+3)=0  p=3−2x; q=(x^2 −4x+3)  y=−(p/2)±((√(p^2 −4q))/2)  y=x−(3/2)±((√(4x−3))/2)  y′=1±(((1/2)(4x−3)^(−(1/2)) ×4)/2)  y′=1±(1/( (√(4x−3))))
x=y+2y+1y+1=x+y+2y+1=y2+2(2x)y+(2x)2y2+(32x)y+(x24x+3)=0p=32x;q=(x24x+3)y=p2±p24q2y=x32±4x32y=1±12(4x3)12×42y=1±14x3

Leave a Reply

Your email address will not be published. Required fields are marked *