Menu Close

let-give-f-x-x-2x-dt-ln-1-t-2-calculate-f-x-




Question Number 27379 by abdo imad last updated on 05/Jan/18
let give f(x)=  ∫_x ^(2x)   (dt/(ln(1+t^2 )))  calculate f^′ (x).
letgivef(x)=x2xdtln(1+t2)calculatef(x).
Commented by abdo imad last updated on 05/Jan/18
if f(x)= ∫_(α(x)) ^(β(x)  ) u(t)dt   with  α and β are are function of x  f^′ (x)= β^(′(x)) u(β(x))−α^′ (x) u(α(x)) in the rxercise  f^′ (x)=(((2x)^′ )/(ln( 1+4x^2 ))) − (((x)^′ )/(ln( 1+x^2 )))  =  (2/(ln( 1+ 4x^2 ))) −(1/(ln(1+x^2 )))  .
iff(x)=α(x)β(x)u(t)dtwithαandβarearefunctionofxf(x)=β(x)u(β(x))α(x)u(α(x))intherxercisef(x)=(2x)ln(1+4x2)(x)ln(1+x2)=2ln(1+4x2)1ln(1+x2).
Answered by prakash jain last updated on 05/Jan/18
f′(x)=(1/(ln(1+4x^2 ))) (d/dx)2x−(1/(ln (1+x^2 )))(d/dx)x+∫_x ^( 2x) 0dt  =(2/(ln(1+4x^2 )))−(1/(ln (1+x^2 )))
f(x)=1ln(1+4x2)ddx2x1ln(1+x2)ddxx+x2x0dt=2ln(1+4x2)1ln(1+x2)

Leave a Reply

Your email address will not be published. Required fields are marked *