Menu Close

let-give-f-x-x-4x-2-1-find-f-n-x-




Question Number 27081 by abdo imad last updated on 01/Jan/18
let give f(x)=  (x/(4x^2 −1))  find f^((n)) (x)  .
$${let}\:{give}\:{f}\left({x}\right)=\:\:\frac{{x}}{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:\:. \\ $$
Answered by prakash jain last updated on 01/Jan/18
f(x)(x/(4x^2 −1))=(1/4)((1/(2x−1))+(1/(2x+1)))  f^((n)) (x)=(1/4)((((−2)^n n!)/((2x−1)^(n+1) ))+(((−2)^n n!)/((2x+1)^(n+1) )))
$${f}\left({x}\right)\frac{{x}}{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}{x}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right) \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\left(−\mathrm{2}\right)^{{n}} {n}!}{\left(\mathrm{2}{x}−\mathrm{1}\right)^{{n}+\mathrm{1}} }+\frac{\left(−\mathrm{2}\right)^{{n}} {n}!}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *