Menu Close

let-give-f-x-x-n-1-e-x-with-n-from-N-find-f-n-0-




Question Number 29349 by abdo imad last updated on 07/Feb/18
let give f(x)= (x^n −1) e^(−x)   with n from N^★    find f^((n)) (0) .
letgivef(x)=(xn1)exwithnfromNfindf(n)(0).
Commented by abdo imad last updated on 09/Feb/18
the leibniz forula give  f^((n)) (x)= Σ_(k=0) ^n  C_n ^k (x^n  −1)^((k)) (e^(−x) )^((n−k))   = (x^n −1)(e^(−x) )^((n))  +Σ_(k=1) ^n C_n ^k (x^n −1)^((k))  ( e^(−x) )^((n−k))   but  (e^(−x) )^((1)) =− e^(−x)  ,  (e^(−x) )^((2)) =(−1)^2  e^(−x)  ...(e^(−x) )^((p)) =(−1)^p  e^(−x)  so  f^((n)) (x)=(−1)^n (x^n −1) e^(−x)  +Σ_(k=1) ^n  C_n ^k  (−1)^(n−k)  e^(−x) (x^n −1)^((k))   (x^n −1)^((1)) = nx^(n−1)  ,(x^n −1)^((2)) =n(n−1)^ x^(n−2) ....  (x^n −1)^((p)) =n(n−1)...(n−p+1)x^(n−p)  =((n!)/((n−p)!))x^(n−p)  with p≤n  f^((n)) (x)=(−1)^n (x^n −1)e^(−x)  +(−1)^n e^(−x)  Σ_(k=1) ^n (−1)^k  C_n ^k  ((n!)/((n−k)!))x^(n−k)   =(−1)^n (x^n −1)e^(−x)  +(−1)^n e^(−x) Σ_(k=) ^(n−1) (...)x^(n−p)   +(−1)^n  e^(−x)  (−1)^n  C_n ^n  n!  ⇒  f^((n)) (0)=(−1)^(n−1)  +n!
theleibnizforulagivef(n)(x)=k=0nCnk(xn1)(k)(ex)(nk)=(xn1)(ex)(n)+k=1nCnk(xn1)(k)(ex)(nk)but(ex)(1)=ex,(ex)(2)=(1)2ex(ex)(p)=(1)pexsof(n)(x)=(1)n(xn1)ex+k=1nCnk(1)nkex(xn1)(k)(xn1)(1)=nxn1,(xn1)(2)=n(n1)xn2.(xn1)(p)=n(n1)(np+1)xnp=n!(np)!xnpwithpnf(n)(x)=(1)n(xn1)ex+(1)nexk=1n(1)kCnkn!(nk)!xnk=(1)n(xn1)ex+(1)nexk=n1()xnp+(1)nex(1)nCnnn!f(n)(0)=(1)n1+n!

Leave a Reply

Your email address will not be published. Required fields are marked *