Question Number 27790 by abdo imad last updated on 14/Jan/18
$${let}\:{give}\:\:{f}\left({x}\right)=\:{x}^{{n}−\mathrm{1}} \:{ln}\left(\mathrm{1}+{x}\right)\:\:{with}\:{n}\:{fromN}^{\ast} \:\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$
Commented by abdo imad last updated on 15/Jan/18
$$\:{by}\:{leibnitz}\:{formule}\:{f}^{\left({n}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \left({x}^{{n}−\mathrm{1}} \right)^{\left({k}\right)} \left({ln}\left(\mathrm{1}+{x}\right)\right)^{\left({n}−{k}\right)} \\ $$$$\:{and}\:{for}\:{p}\leqslant{n}\:\:\:\:\left({x}^{{n}} \right)^{\left({p}\right)} ={n}\left({n}−\mathrm{1}\right)…\left({n}−{p}+\mathrm{1}\right){x}^{{n}−{p}} \:{so}\:{for} \\ $$$${k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\:\:\:\left({x}^{{n}−\mathrm{1}} \right)^{{k}} =\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)….\left({n}−\mathrm{1}−{k}\:+\mathrm{1}\right){x}^{{n}−\mathrm{1}−{k}} \\ $$$$=\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)…\left({n}−{k}\right)\:{x}^{{n}−\mathrm{1}−{k}} \:\: \\ $$$${and}\:{we}\:{have}\:\:\:{ln}\left(\mathrm{1}+{x}\right)^{\left({p}\right)} =\frac{\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} \left({p}−\mathrm{1}\right)!}{\left(\mathrm{1}+{x}\right)^{{p}} }\:{for}\:{p}\geqslant\mathrm{1} \\ $$$$\Rightarrow\:{f}^{\left({n}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)…\left({n}−{k}\right)\:{x}^{{n}−\mathrm{1}−{k}} \:\frac{\left(−\mathrm{1}\right)^{{n}−{k}−\mathrm{1}} \left({n}−{k}−\mathrm{1}\right)!}{\left(\mathrm{1}+{x}\right)^{{n}−{k}} } \\ $$$$\left(\:\:\:\:\left({x}^{{n}−\mathrm{1}} \right)^{\left({n}\right)} =\mathrm{0}\right) \\ $$$$ \\ $$
Commented by abdo imad last updated on 15/Jan/18
$${f}^{\left({n}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left({x}^{{n}−\mathrm{1}} \right)^{\left({k}\right)} \:\left({ln}\left(\mathrm{1}+{x}\right)^{\left({n}−{k}\right)} \right. \\ $$$${and}\:{f}^{\left({n}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{C}_{{n}} ^{{k}} \:\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)…\left({n}−{k}\right){x}^{{n}−\mathrm{1}−{k}} \:\frac{\left(−\mathrm{1}\right)^{{n}−{k}−\mathrm{1}} \left({n}−{k}−\mathrm{1}\right)!}{\left(\mathrm{1}+{x}\right)^{{n}−{k}} } \\ $$