Menu Close

let-give-f-x-x-n-1-ln-1-x-with-n-fromN-find-f-n-x-




Question Number 27790 by abdo imad last updated on 14/Jan/18
let give  f(x)= x^(n−1)  ln(1+x)  with n fromN^∗    find f^((n)) (x)
letgivef(x)=xn1ln(1+x)withnfromNfindf(n)(x)
Commented by abdo imad last updated on 15/Jan/18
 by leibnitz formule f^((n)) (x)= Σ_(k=0) ^n (x^(n−1) )^((k)) (ln(1+x))^((n−k))    and for p≤n    (x^n )^((p)) =n(n−1)...(n−p+1)x^(n−p)  so for  k∈[[0,n−1]]    (x^(n−1) )^k =(n−1)(n−2)....(n−1−k +1)x^(n−1−k)   =(n−1)(n−2)...(n−k) x^(n−1−k)     and we have   ln(1+x)^((p)) =(((−1)^(p−1) (p−1)!)/((1+x)^p )) for p≥1  ⇒ f^((n)) (x)= Σ_(k=0) ^(n−1) (n−1)(n−2)...(n−k) x^(n−1−k)  (((−1)^(n−k−1) (n−k−1)!)/((1+x)^(n−k) ))  (    (x^(n−1) )^((n)) =0)
byleibnitzformulef(n)(x)=k=0n(xn1)(k)(ln(1+x))(nk)andforpn(xn)(p)=n(n1)(np+1)xnpsofork[[0,n1]](xn1)k=(n1)(n2).(n1k+1)xn1k=(n1)(n2)(nk)xn1kandwehaveln(1+x)(p)=(1)p1(p1)!(1+x)pforp1f(n)(x)=k=0n1(n1)(n2)(nk)xn1k(1)nk1(nk1)!(1+x)nk((xn1)(n)=0)
Commented by abdo imad last updated on 15/Jan/18
f^((n)) (x)= Σ_(k=0) ^n  C_n ^k  (x^(n−1) )^((k))  (ln(1+x)^((n−k))   and f^((n)) (x)= Σ_(k=0) ^(n−1)  C_n ^k  (n−1)(n−2)...(n−k)x^(n−1−k)  (((−1)^(n−k−1) (n−k−1)!)/((1+x)^(n−k) ))
f(n)(x)=k=0nCnk(xn1)(k)(ln(1+x)(nk)andf(n)(x)=k=0n1Cnk(n1)(n2)(nk)xn1k(1)nk1(nk1)!(1+x)nk

Leave a Reply

Your email address will not be published. Required fields are marked *