Menu Close

let-give-f-x-x-x-1-1-calculate-f-1-x-2-calculate-f-1-x-




Question Number 32701 by caravan msup abdo. last updated on 31/Mar/18
let give f(x)= (x/( (√(x+1))))  1)calculate f^(−1) (x))  2) calculate (f^(−1) )^′ (x) .
letgivef(x)=xx+11)calculatef1(x))2)calculate(f1)(x).
Commented by Rio Mike last updated on 31/Mar/18
solution  let f(x)=y  y=(x/( (√(x+1))))  ((y(√(x+1)))/y)=(x/y)  x+1=((x/y))^2   x=(x^2 /y^2 )−1  replacing y by x.  f^(−1) (x)=((x^2_  /x^2 ))−1
solutionletf(x)=yy=xx+1yx+1y=xyx+1=(xy)2x=x2y21replacingybyx.f1(x)=(x2x2)1
Commented by MJS last updated on 31/Mar/18
you must exchange x and y  each x must be replaced by y  and each y must be replaced by x
youmustexchangexandyeachxmustbereplacedbyyandeachymustbereplacedbyx
Commented by abdo imad last updated on 01/Apr/18
let put f(x)=y  ⇔x=f^(−1) (y) ⇒(x/( (√(x+1))))  =y  ⇒x=y(√(x+1))  with conditiona x>−1 and (x/y)>0  ⇒x^2  =y^2 (x+1)=y^2 x +y^2  ⇒  x^2  −y^2 x −y^2 =0  equ.wth unknown x  Δ = y^4   +4y^2  ≥0  ⇒ x_1  =((y^2  +(√(y^4  +4y^2 )))/2)  x_2 = ((y^2  −(√(y^4  +4y^2 )))/2) but we must have x+1>0 let try  with x_2   because its clear that x_1  +1>0  x_2  +1 = ((y^2  −(√(y^4  +4y^2 )))/2) +1  =((y^2  +2 −(√(y^4  +4y^2 )))/2)  (y^2  +2)^(2 )  −(y^4  +4y^2 ) = 4 condition realized   (x_2 /y) = ((y^2  −∣y∣(√(y^2 +4)))/(2y)) =y + ξ((√(4+y^2 ))/2) with ξ^2  =1 but the sine  of  (x_2 /y) is not constant  so the so<ution of the equ.is x_1   and f^(−1) (x) = (1/2)(x^2  +(√(x^4  +4x^2 )) )  2)(f^(−1) )^′ (x)= (1/2)(2x + ((4x^3  +8x)/(2(√(x^4  +4x^2 )))))  = x  + ((2x^3  +4x)/( (√(x^4  +4x^2 )))) .
letputf(x)=yx=f1(y)xx+1=yx=yx+1withconditionax>1andxy>0x2=y2(x+1)=y2x+y2x2y2xy2=0equ.wthunknownxΔ=y4+4y20x1=y2+y4+4y22x2=y2y4+4y22butwemusthavex+1>0lettrywithx2becauseitsclearthatx1+1>0x2+1=y2y4+4y22+1=y2+2y4+4y22(y2+2)2(y4+4y2)=4conditionrealizedx2y=y2yy2+42y=y+ξ4+y22withξ2=1butthesineofx2yisnotconstantsotheso<utionoftheequ.isx1andf1(x)=12(x2+x4+4x2)2)(f1)(x)=12(2x+4x3+8x2x4+4x2)=x+2x3+4xx4+4x2.
Answered by MJS last updated on 31/Mar/18
x=(y/( (√(y+1))))  x(√(y+1))=y  x^2 y+x^2 =y^2   y^2 −x^2 y−x^2 =0  y=(x^2 /2)±(√((x^4 /4)+x^2 ))  y=(x^2 /2)±(√((x^2 /4)(x^2 +4)))  y=f^(−1) (x)=(x^2 /2)±(x/2)(√(x^2 +4))    y′=((2x)/2)±((1/2)×(x^2 +4)^(1/2) +(x/2)×(1/2)×(x^2 +4)^(−(1/2)) ×2x)  y′=x±((1/2)(x^2 +4)^(1/2) +(x^2 /2)(x^2 +4)^(−(1/2)) )  y′=x±(1/2)(x^2 +4)^(−(1/2)) ((x^2 +4)^1 +x^2 )  y′=(f^(−1) )′(x)=x±((x^2 +2)/( (√(x^2 +4))))
x=yy+1xy+1=yx2y+x2=y2y2x2yx2=0y=x22±x44+x2y=x22±x24(x2+4)y=f1(x)=x22±x2x2+4y=2x2±(12×(x2+4)12+x2×12×(x2+4)12×2x)y=x±(12(x2+4)12+x22(x2+4)12)y=x±12(x2+4)12((x2+4)1+x2)y=(f1)(x)=x±x2+2x2+4

Leave a Reply

Your email address will not be published. Required fields are marked *