Question Number 32341 by abdo imad last updated on 23/Mar/18
$${let}\:{give}\:\lambda\:{from}\:{R}\:{and}\:\lambda^{\mathrm{2}} \neq\mathrm{1}\:{and} \\ $$$${I}_{{n}} \left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{cos}\left({nt}\right)}{\mathrm{1}−\mathrm{2}\lambda{cost}\:+\lambda^{\mathrm{2}} }{dt}\:\:.{calculate}\:{I}_{{n}} \left(\lambda\right). \\ $$
Commented by abdo imad last updated on 01/Apr/18
$${ch}.{t}=\mathrm{2}{x}\:{give}\:\:{I}_{{n}} \left(\lambda\right)\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}\left(\mathrm{2}{nx}\right)}{\mathrm{1}−\mathrm{2}\lambda{cos}\left(\mathrm{2}{x}\right)\:+\lambda^{\mathrm{2}} }{dx}\:{after} \\ $$$${we}\:{use}\:{the}\:{ch}.\:{e}^{{ix}} ={z} \\ $$$${I}_{{n}} \left(\lambda\right)\:=\mathrm{2}\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\frac{{z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} }{\mathrm{2}}}{\mathrm{1}−\mathrm{2}\lambda\:\frac{{z}^{\mathrm{2}} \:+{z}^{−\mathrm{2}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}} \\ $$$$=\:\mathrm{2}\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} }{{iz}\left(\:\mathrm{2}\:−\mathrm{2}\lambda\left({z}^{\mathrm{2}} \:+{z}^{−\mathrm{2}} \right)\right)}{dz} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\:\:\:\frac{{z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} }{{iz}\left(\:\mathrm{1}−\lambda{z}^{\mathrm{2}} \:−\lambda\:{z}^{−\mathrm{2}} \right)}\:=\:\int_{\mid{z}\mid=\mathrm{1}} \:\frac{−{i}\left({z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} \right)}{{z}\left(\:\mathrm{1}−\lambda{z}^{\mathrm{2}} \:−\frac{\lambda}{{z}^{\mathrm{2}} }\right)}{dz} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{−{i}\:{z}\left({z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} \right)}{{z}^{\mathrm{2}} \:−\lambda{z}^{\mathrm{4}} \:−\lambda}\:{dz} \\ $$$$=\:\int_{\mid{z}\mid\:=\mathrm{1}} \:\:\:\frac{{i}\left(\:{z}^{\mathrm{2}{n}+\mathrm{1}} \:+{z}^{−\mathrm{2}{n}+\mathrm{1}} \right)}{\lambda{z}^{\mathrm{4}} \:−{z}^{\mathrm{2}} \:+\lambda}{dz}\:\:{let}\:{put} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{i}\left({z}^{\mathrm{2}{n}+\mathrm{1}} \:+{z}^{−\mathrm{2}{n}+\mathrm{1}} \right)}{\lambda\:{z}^{\mathrm{4}} \:−{z}^{\mathrm{2}} \:+\lambda}\:\:.{poles}\:{of}\:\varphi? \\ $$$$\lambda\:{z}^{\mathrm{4}} \:−{z}^{\mathrm{2}} \:+\lambda\:=\mathrm{0}\:\Rightarrow\Delta\:=\:\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} \:\:{if}\:\Delta\geqslant\mathrm{0}\:{the}\:{roots}\:{are}\:{reals} \\ $$$${z}_{\mathrm{1}} ^{\mathrm{2}} \:=\:\frac{\mathrm{1}\:+\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}\:{and}\:{z}_{\mathrm{2}} ^{\mathrm{2}} \:=\:\frac{\mathrm{1}−\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}\:\Rightarrow \\ $$$${z}_{\mathrm{1}} =\xi\:\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}}\:\:\:{and}\:\:{z}_{\mathrm{2}} \:=\:\xi\sqrt{\frac{\mathrm{1}−\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}} \\ $$$${with}\:\xi^{\mathrm{2}} \:=\mathrm{1}\:\:{and}\:{we}\:{get}\:\int_{{R}} \varphi\left({z}\right){dx}=\mathrm{2}{i}\pi\sum_{{i}} \:{Res}\left(\varphi,{x}_{{i}} \right) \\ $$$${if}\:\Delta<\mathrm{0}\:\:\:\Delta\:=\left({i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}\:\right)^{\mathrm{2}} \:\Rightarrow\: \\ $$$${z}_{\mathrm{1}} ^{\mathrm{2}} \:\:\:=\:\frac{\mathrm{1}+{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} \:−\mathrm{1}}}{\mathrm{2}}\:\Rightarrow\:{z}_{\mathrm{1}} \:=\xi\sqrt{\frac{\mathrm{1}+{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}} \\ $$$${z}_{\mathrm{2}} ^{\mathrm{2}} \:\:=\:\frac{\mathrm{1}\:−{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\:\Rightarrow\:{z}_{\mathrm{2}} =\xi\sqrt{\:\frac{\mathrm{1}−{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}} \\ $$$${and}\:{we}\:{choose}\:{the}\:{roots}\:{wich}\:{verify}\:\mid{z}_{{i}} \mid\leqslant\mathrm{1}\:….{be}\:{continued} \\ $$