Menu Close

let-give-from-R-and-2-1-and-I-n-0-pi-cos-nt-1-2-cost-2-dt-calculate-I-n-




Question Number 32341 by abdo imad last updated on 23/Mar/18
let give λ from R and λ^2 ≠1 and  I_n (λ) = ∫_0 ^π    ((cos(nt))/(1−2λcost +λ^2 ))dt  .calculate I_n (λ).
$${let}\:{give}\:\lambda\:{from}\:{R}\:{and}\:\lambda^{\mathrm{2}} \neq\mathrm{1}\:{and} \\ $$$${I}_{{n}} \left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{cos}\left({nt}\right)}{\mathrm{1}−\mathrm{2}\lambda{cost}\:+\lambda^{\mathrm{2}} }{dt}\:\:.{calculate}\:{I}_{{n}} \left(\lambda\right). \\ $$
Commented by abdo imad last updated on 01/Apr/18
ch.t=2x give  I_n (λ) =2 ∫_0 ^(2π)   ((cos(2nx))/(1−2λcos(2x) +λ^2 ))dx after  we use the ch. e^(ix) =z  I_n (λ) =2 ∫_(∣z∣=1)      (((z^(2n)  +z^(−2n) )/2)/(1−2λ ((z^2  +z^(−2) )/2))) (dz/(iz))  = 2 ∫_(∣z∣=1)    ((z^(2n)  +z^(−2n) )/(iz( 2 −2λ(z^2  +z^(−2) ))))dz  = ∫_(∣z∣=1)         ((z^(2n)  +z^(−2n) )/(iz( 1−λz^2  −λ z^(−2) ))) = ∫_(∣z∣=1)  ((−i(z^(2n)  +z^(−2n) ))/(z( 1−λz^2  −(λ/z^2 ))))dz  = ∫_(∣z∣=1)      ((−i z(z^(2n)  +z^(−2n) ))/(z^2  −λz^4  −λ)) dz  = ∫_(∣z∣ =1)    ((i( z^(2n+1)  +z^(−2n+1) ))/(λz^4  −z^2  +λ))dz  let put  ϕ(z) = ((i(z^(2n+1)  +z^(−2n+1) ))/(λ z^4  −z^2  +λ))  .poles of ϕ?  λ z^4  −z^2  +λ =0 ⇒Δ = 1−4λ^2   if Δ≥0 the roots are reals  z_1 ^2  = ((1 +(√(1−4λ^2 )))/2) and z_2 ^2  = ((1−(√(1−4λ^2 )))/2) ⇒  z_1 =ξ (√((1+(√(1−4λ^2 )))/2))   and  z_2  = ξ(√((1−(√(1−4λ^2 )))/2))  with ξ^2  =1  and we get ∫_R ϕ(z)dx=2iπΣ_i  Res(ϕ,x_i )  if Δ<0   Δ =(i(√(4λ^2 −1)) )^2  ⇒   z_1 ^2    = ((1+i(√(4λ^2  −1)))/2) ⇒ z_1  =ξ(√((1+i(√(4λ^2 −1)))/2))  z_2 ^2   = ((1 −i(√(4λ^2 −1)))/2) ⇒ z_2 =ξ(√( ((1−i(√(4λ^2 −1)))/2)))  and we choose the roots wich verify ∣z_i ∣≤1 ....be continued
$${ch}.{t}=\mathrm{2}{x}\:{give}\:\:{I}_{{n}} \left(\lambda\right)\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}\left(\mathrm{2}{nx}\right)}{\mathrm{1}−\mathrm{2}\lambda{cos}\left(\mathrm{2}{x}\right)\:+\lambda^{\mathrm{2}} }{dx}\:{after} \\ $$$${we}\:{use}\:{the}\:{ch}.\:{e}^{{ix}} ={z} \\ $$$${I}_{{n}} \left(\lambda\right)\:=\mathrm{2}\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\frac{{z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} }{\mathrm{2}}}{\mathrm{1}−\mathrm{2}\lambda\:\frac{{z}^{\mathrm{2}} \:+{z}^{−\mathrm{2}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}} \\ $$$$=\:\mathrm{2}\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} }{{iz}\left(\:\mathrm{2}\:−\mathrm{2}\lambda\left({z}^{\mathrm{2}} \:+{z}^{−\mathrm{2}} \right)\right)}{dz} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\:\:\:\frac{{z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} }{{iz}\left(\:\mathrm{1}−\lambda{z}^{\mathrm{2}} \:−\lambda\:{z}^{−\mathrm{2}} \right)}\:=\:\int_{\mid{z}\mid=\mathrm{1}} \:\frac{−{i}\left({z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} \right)}{{z}\left(\:\mathrm{1}−\lambda{z}^{\mathrm{2}} \:−\frac{\lambda}{{z}^{\mathrm{2}} }\right)}{dz} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{−{i}\:{z}\left({z}^{\mathrm{2}{n}} \:+{z}^{−\mathrm{2}{n}} \right)}{{z}^{\mathrm{2}} \:−\lambda{z}^{\mathrm{4}} \:−\lambda}\:{dz} \\ $$$$=\:\int_{\mid{z}\mid\:=\mathrm{1}} \:\:\:\frac{{i}\left(\:{z}^{\mathrm{2}{n}+\mathrm{1}} \:+{z}^{−\mathrm{2}{n}+\mathrm{1}} \right)}{\lambda{z}^{\mathrm{4}} \:−{z}^{\mathrm{2}} \:+\lambda}{dz}\:\:{let}\:{put} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{i}\left({z}^{\mathrm{2}{n}+\mathrm{1}} \:+{z}^{−\mathrm{2}{n}+\mathrm{1}} \right)}{\lambda\:{z}^{\mathrm{4}} \:−{z}^{\mathrm{2}} \:+\lambda}\:\:.{poles}\:{of}\:\varphi? \\ $$$$\lambda\:{z}^{\mathrm{4}} \:−{z}^{\mathrm{2}} \:+\lambda\:=\mathrm{0}\:\Rightarrow\Delta\:=\:\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} \:\:{if}\:\Delta\geqslant\mathrm{0}\:{the}\:{roots}\:{are}\:{reals} \\ $$$${z}_{\mathrm{1}} ^{\mathrm{2}} \:=\:\frac{\mathrm{1}\:+\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}\:{and}\:{z}_{\mathrm{2}} ^{\mathrm{2}} \:=\:\frac{\mathrm{1}−\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}\:\Rightarrow \\ $$$${z}_{\mathrm{1}} =\xi\:\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}}\:\:\:{and}\:\:{z}_{\mathrm{2}} \:=\:\xi\sqrt{\frac{\mathrm{1}−\sqrt{\mathrm{1}−\mathrm{4}\lambda^{\mathrm{2}} }}{\mathrm{2}}} \\ $$$${with}\:\xi^{\mathrm{2}} \:=\mathrm{1}\:\:{and}\:{we}\:{get}\:\int_{{R}} \varphi\left({z}\right){dx}=\mathrm{2}{i}\pi\sum_{{i}} \:{Res}\left(\varphi,{x}_{{i}} \right) \\ $$$${if}\:\Delta<\mathrm{0}\:\:\:\Delta\:=\left({i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}\:\right)^{\mathrm{2}} \:\Rightarrow\: \\ $$$${z}_{\mathrm{1}} ^{\mathrm{2}} \:\:\:=\:\frac{\mathrm{1}+{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} \:−\mathrm{1}}}{\mathrm{2}}\:\Rightarrow\:{z}_{\mathrm{1}} \:=\xi\sqrt{\frac{\mathrm{1}+{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}} \\ $$$${z}_{\mathrm{2}} ^{\mathrm{2}} \:\:=\:\frac{\mathrm{1}\:−{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\:\Rightarrow\:{z}_{\mathrm{2}} =\xi\sqrt{\:\frac{\mathrm{1}−{i}\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}} \\ $$$${and}\:{we}\:{choose}\:{the}\:{roots}\:{wich}\:{verify}\:\mid{z}_{{i}} \mid\leqslant\mathrm{1}\:….{be}\:{continued} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *