Menu Close

let-give-from-R-and-2-1-and-I-n-0-pi-cos-nt-1-2-cost-2-dt-calculate-I-n-




Question Number 32341 by abdo imad last updated on 23/Mar/18
let give λ from R and λ^2 ≠1 and  I_n (λ) = ∫_0 ^π    ((cos(nt))/(1−2λcost +λ^2 ))dt  .calculate I_n (λ).
letgiveλfromRandλ21andIn(λ)=0πcos(nt)12λcost+λ2dt.calculateIn(λ).
Commented by abdo imad last updated on 01/Apr/18
ch.t=2x give  I_n (λ) =2 ∫_0 ^(2π)   ((cos(2nx))/(1−2λcos(2x) +λ^2 ))dx after  we use the ch. e^(ix) =z  I_n (λ) =2 ∫_(∣z∣=1)      (((z^(2n)  +z^(−2n) )/2)/(1−2λ ((z^2  +z^(−2) )/2))) (dz/(iz))  = 2 ∫_(∣z∣=1)    ((z^(2n)  +z^(−2n) )/(iz( 2 −2λ(z^2  +z^(−2) ))))dz  = ∫_(∣z∣=1)         ((z^(2n)  +z^(−2n) )/(iz( 1−λz^2  −λ z^(−2) ))) = ∫_(∣z∣=1)  ((−i(z^(2n)  +z^(−2n) ))/(z( 1−λz^2  −(λ/z^2 ))))dz  = ∫_(∣z∣=1)      ((−i z(z^(2n)  +z^(−2n) ))/(z^2  −λz^4  −λ)) dz  = ∫_(∣z∣ =1)    ((i( z^(2n+1)  +z^(−2n+1) ))/(λz^4  −z^2  +λ))dz  let put  ϕ(z) = ((i(z^(2n+1)  +z^(−2n+1) ))/(λ z^4  −z^2  +λ))  .poles of ϕ?  λ z^4  −z^2  +λ =0 ⇒Δ = 1−4λ^2   if Δ≥0 the roots are reals  z_1 ^2  = ((1 +(√(1−4λ^2 )))/2) and z_2 ^2  = ((1−(√(1−4λ^2 )))/2) ⇒  z_1 =ξ (√((1+(√(1−4λ^2 )))/2))   and  z_2  = ξ(√((1−(√(1−4λ^2 )))/2))  with ξ^2  =1  and we get ∫_R ϕ(z)dx=2iπΣ_i  Res(ϕ,x_i )  if Δ<0   Δ =(i(√(4λ^2 −1)) )^2  ⇒   z_1 ^2    = ((1+i(√(4λ^2  −1)))/2) ⇒ z_1  =ξ(√((1+i(√(4λ^2 −1)))/2))  z_2 ^2   = ((1 −i(√(4λ^2 −1)))/2) ⇒ z_2 =ξ(√( ((1−i(√(4λ^2 −1)))/2)))  and we choose the roots wich verify ∣z_i ∣≤1 ....be continued
ch.t=2xgiveIn(λ)=202πcos(2nx)12λcos(2x)+λ2dxafterweusethech.eix=zIn(λ)=2z∣=1z2n+z2n212λz2+z22dziz=2z∣=1z2n+z2niz(22λ(z2+z2))dz=z∣=1z2n+z2niz(1λz2λz2)=z∣=1i(z2n+z2n)z(1λz2λz2)dz=z∣=1iz(z2n+z2n)z2λz4λdz=z=1i(z2n+1+z2n+1)λz4z2+λdzletputφ(z)=i(z2n+1+z2n+1)λz4z2+λ.polesofφ?λz4z2+λ=0Δ=14λ2ifΔ0therootsarerealsz12=1+14λ22andz22=114λ22z1=ξ1+14λ22andz2=ξ114λ22withξ2=1andwegetRφ(z)dx=2iπiRes(φ,xi)ifΔ<0Δ=(i4λ21)2z12=1+i4λ212z1=ξ1+i4λ212z22=1i4λ212z2=ξ1i4λ212andwechoosetherootswichverifyzi∣⩽1.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *