Menu Close

let-give-gt-0-find-the-value-of-0-1-dx-1-x-1-x-




Question Number 33120 by abdo imad last updated on 10/Apr/18
let give α>0 find the value of  ∫_0 ^1     (dx/( (√((1−x)(1+αx))))) .
letgiveα>0findthevalueof01dx(1x)(1+αx).
Answered by MJS last updated on 11/Apr/18
(1−x)(1+αx)=−αx^2 +(α−1)x+1  ∫(dx/( (√(ax^2 +bx+c))))=−(1/( (√(−a))))sin^(−1) ((2ax+b)/( (√(b^2 −4ac)))); a<0  ∫_0 ^1 (dx/( (√(−αx^2 +(α−1)x+1))))=[−(1/( (√α)))sin^(−1) ((−2αx+α−1)/( (√((α−1)^2 +4α))))]_0 ^1 =  =−(1/( (√α)))[sin^(−1) ((−2αx+α−1)/(α+1))]_0 ^1 =  =−(1/( (√α)))(sin^(−1) ((−α−1)/(α+1))−sin^(−1) ((α−1)/(α+1)))=  =(1/( (√α)))(sin^(−1) 1+sin^(−1) ((α−1)/(α+1)))=  =(1/( (√α)))((π/2)+sin^(−1) ((α−1)/(α+1)))
(1x)(1+αx)=αx2+(α1)x+1dxax2+bx+c=1asin12ax+bb24ac;a<010dxαx2+(α1)x+1=[1αsin12αx+α1(α1)2+4α]01==1α[sin12αx+α1α+1]01==1α(sin1α1α+1sin1α1α+1)==1α(sin11+sin1α1α+1)==1α(π2+sin1α1α+1)

Leave a Reply

Your email address will not be published. Required fields are marked *