Menu Close

let-give-gt-0-find-the-value-of-0-1-dx-1-x-1-x-




Question Number 33120 by abdo imad last updated on 10/Apr/18
let give α>0 find the value of  ∫_0 ^1     (dx/( (√((1−x)(1+αx))))) .
$${let}\:{give}\:\alpha>\mathrm{0}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\:\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\alpha{x}\right)}}\:. \\ $$
Answered by MJS last updated on 11/Apr/18
(1−x)(1+αx)=−αx^2 +(α−1)x+1  ∫(dx/( (√(ax^2 +bx+c))))=−(1/( (√(−a))))sin^(−1) ((2ax+b)/( (√(b^2 −4ac)))); a<0  ∫_0 ^1 (dx/( (√(−αx^2 +(α−1)x+1))))=[−(1/( (√α)))sin^(−1) ((−2αx+α−1)/( (√((α−1)^2 +4α))))]_0 ^1 =  =−(1/( (√α)))[sin^(−1) ((−2αx+α−1)/(α+1))]_0 ^1 =  =−(1/( (√α)))(sin^(−1) ((−α−1)/(α+1))−sin^(−1) ((α−1)/(α+1)))=  =(1/( (√α)))(sin^(−1) 1+sin^(−1) ((α−1)/(α+1)))=  =(1/( (√α)))((π/2)+sin^(−1) ((α−1)/(α+1)))
$$\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\alpha{x}\right)=−\alpha{x}^{\mathrm{2}} +\left(\alpha−\mathrm{1}\right){x}+\mathrm{1} \\ $$$$\int\frac{{dx}}{\:\sqrt{{ax}^{\mathrm{2}} +{bx}+{c}}}=−\frac{\mathrm{1}}{\:\sqrt{−{a}}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}{ax}+{b}}{\:\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}};\:{a}<\mathrm{0} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{−\alpha{x}^{\mathrm{2}} +\left(\alpha−\mathrm{1}\right){x}+\mathrm{1}}}=\left[−\frac{\mathrm{1}}{\:\sqrt{\alpha}}\mathrm{sin}^{−\mathrm{1}} \frac{−\mathrm{2}\alpha{x}+\alpha−\mathrm{1}}{\:\sqrt{\left(\alpha−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\alpha}}\right]_{\mathrm{0}} ^{\mathrm{1}} = \\ $$$$=−\frac{\mathrm{1}}{\:\sqrt{\alpha}}\left[\mathrm{sin}^{−\mathrm{1}} \frac{−\mathrm{2}\alpha{x}+\alpha−\mathrm{1}}{\alpha+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} = \\ $$$$=−\frac{\mathrm{1}}{\:\sqrt{\alpha}}\left(\mathrm{sin}^{−\mathrm{1}} \frac{−\alpha−\mathrm{1}}{\alpha+\mathrm{1}}−\mathrm{sin}^{−\mathrm{1}} \frac{\alpha−\mathrm{1}}{\alpha+\mathrm{1}}\right)= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\alpha}}\left(\mathrm{sin}^{−\mathrm{1}} \mathrm{1}+\mathrm{sin}^{−\mathrm{1}} \frac{\alpha−\mathrm{1}}{\alpha+\mathrm{1}}\right)= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\alpha}}\left(\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\alpha−\mathrm{1}}{\alpha+\mathrm{1}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *