Menu Close

let-give-I-0-1-ln-1-x-1-x-2-dx-and-J-0-1-2-x-1-x-2-1-xy-dxdy-calculate-J-by-two-methods-then-find-the-value-of-I-




Question Number 28200 by abdo imad last updated on 21/Jan/18
let give I= ∫_0 ^1   ((ln(1+x))/(1+x^2 ))dx  and J=∫∫_([0,1]^2 )    (x/((1+x^2 )(1+xy)))dxdy  calculate J by two methods then find the value of I.
letgiveI=01ln(1+x)1+x2dxandJ=[0,1]2x(1+x2)(1+xy)dxdycalculateJbytwomethodsthenfindthevalueofI.
Commented by abdo imad last updated on 22/Jan/18
we have  J= ∫_0 ^1 (∫_0 ^1    (x/(1+xy))dy)(dx/(1+x^2 )) but  ∫_0 ^1   (x/(1+xy))dy= [ln(1+xy)]_(y=0) ^(y=1) =ln (1+x) so  J= ∫_0 ^1    ((ln(1+x))/(1+x^2 ))dx   from another side  J= ∫_0 ^1  ( ∫_0 ^1      (x/((1+x^2 )(1+xy)))dx)dy let decompose  F(x)=  (x/((1+x^2 )(1+xy)))=   (α/(1+xy))+  ((ax+b)/(1+x^2 ))  α= lim_(x→((−1)/y))  (1+xy)F(x)=   ((−1)/(y( 1+(1/y^2 ))))= ((−1)/(y+(1/y)))= ((−y)/(1+y^2 ))  lim_(x→+∝) xF(x)=0= (α/y) +a ⇒a= −(α/y) =  (1/(1+y^2 ))  F(x)=  ((−y)/((1+y^2 )(1+xy))) +  (((1/(1+y^2 ))x +b)/(1+x^2 ))  F(0)=0 = ((−y)/(1+y^2 )) +b⇒ b=(y/(1+y^2 ))  and  F(x)= ((−y)/((1+y^2 )(1+xy))) + (1/(1+y^2 ()) ((x+y)/(1+x^2 )))  ∫_0 ^1 F(x)dx= ((−1)/(1+y^2 )) ∫_0 ^1   ((ydx)/(1+xy))  +(1/(2(1+y^2 ))) ∫_0 ^1   ((2x)/(1+x^2 ))dx +(y/(1+y^2 ))∫_0 ^1 (dx/(1+x^2 ))  = ((−1)/(1+y^2 )) [ln(1+xy)]_(x=0) ^(x=1)    +(1/(2(1+y^2 ))) [ln(1+x^2 )]_0 ^1   +(π/4) (y/(1+y^2 ))  −((ln(1+y))/(1+y^2 ))   +((ln2)/(2(1+y^2 )))  + ((πy)/(4(1+y^2 )))  J=−∫_0 ^1 ((ln(1+y))/(1+y^2 ))dy  +((ln2)/2) ∫_0 ^1   (dy/(1+y^2 ))  +(π/8) ∫_0 ^1  ((2ydy)/(1+y^2 ))  2J= (π/8)ln2  +(π/8) ln2= (π/4)ln2 ⇒J= (π/8)ln2  .
wehaveJ=01(01x1+xydy)dx1+x2but01x1+xydy=[ln(1+xy)]y=0y=1=ln(1+x)soJ=01ln(1+x)1+x2dxfromanothersideJ=01(01x(1+x2)(1+xy)dx)dyletdecomposeF(x)=x(1+x2)(1+xy)=α1+xy+ax+b1+x2α=limx1y(1+xy)F(x)=1y(1+1y2)=1y+1y=y1+y2limx+xF(x)=0=αy+aa=αy=11+y2F(x)=y(1+y2)(1+xy)+11+y2x+b1+x2F(0)=0=y1+y2+bb=y1+y2andF(x)=y(1+y2)(1+xy)+11+y2(x+y1+x2)01F(x)dx=11+y201ydx1+xy+12(1+y2)012x1+x2dx+y1+y201dx1+x2=11+y2[ln(1+xy)]x=0x=1+12(1+y2)[ln(1+x2)]01+π4y1+y2ln(1+y)1+y2+ln22(1+y2)+πy4(1+y2)J=01ln(1+y)1+y2dy+ln2201dy1+y2+π8012ydy1+y22J=π8ln2+π8ln2=π4ln2J=π8ln2.

Leave a Reply

Your email address will not be published. Required fields are marked *