let-give-I-0-1-ln-1-x-1-x-2-dx-and-J-0-1-2-x-1-x-2-1-xy-dxdy-calculate-J-by-two-methods-then-find-the-value-of-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 28200 by abdo imad last updated on 21/Jan/18 letgiveI=∫01ln(1+x)1+x2dxandJ=∫∫[0,1]2x(1+x2)(1+xy)dxdycalculateJbytwomethodsthenfindthevalueofI. Commented by abdo imad last updated on 22/Jan/18 wehaveJ=∫01(∫01x1+xydy)dx1+x2but∫01x1+xydy=[ln(1+xy)]y=0y=1=ln(1+x)soJ=∫01ln(1+x)1+x2dxfromanothersideJ=∫01(∫01x(1+x2)(1+xy)dx)dyletdecomposeF(x)=x(1+x2)(1+xy)=α1+xy+ax+b1+x2α=limx→−1y(1+xy)F(x)=−1y(1+1y2)=−1y+1y=−y1+y2limx→+∝xF(x)=0=αy+a⇒a=−αy=11+y2F(x)=−y(1+y2)(1+xy)+11+y2x+b1+x2F(0)=0=−y1+y2+b⇒b=y1+y2andF(x)=−y(1+y2)(1+xy)+11+y2(x+y1+x2)∫01F(x)dx=−11+y2∫01ydx1+xy+12(1+y2)∫012x1+x2dx+y1+y2∫01dx1+x2=−11+y2[ln(1+xy)]x=0x=1+12(1+y2)[ln(1+x2)]01+π4y1+y2−ln(1+y)1+y2+ln22(1+y2)+πy4(1+y2)J=−∫01ln(1+y)1+y2dy+ln22∫01dy1+y2+π8∫012ydy1+y22J=π8ln2+π8ln2=π4ln2⇒J=π8ln2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: suppose-one-of-the-side-of-any-box-that-can-be-carried-onto-an-airplane-must-be-less-than-8m-Find-the-maximum-value-of-such-a-box-if-the-sum-of-the-three-sides-can-not-exceed-46m-Next Next post: Question-28202 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.