Menu Close

let-give-I-0-1-ln-x-ln-1-x-dx-give-I-at-form-of-serie-




Question Number 33990 by abdo imad last updated on 28/Apr/18
let give I  =∫_0 ^1 ln(x)ln(1+x)dx   give I at form of serie .
$${let}\:{give}\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\: \\ $$$${give}\:{I}\:{at}\:{form}\:{of}\:{serie}\:. \\ $$
Commented by abdo imad last updated on 01/May/18
we have ln^′ (1+x)= (1/(1+x)) =Σ_(n=0) ^∞  (−1)^n x^n    with ∣x∣<1  ⇒ln(1+x) =Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^(n+1)  +λ =Σ_(n=1) ^∞   (((−1)^(n−1) )/n)x^n  +λ  λ=0 ⇒ ln(1+x)=Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n   I =∫_0 ^1  (Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n )ln(x)dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^1  x^n ln(x)dx   let integrate by parts  A_n = ∫_0 ^1  x^n  ln(x)dx =[(1/(n+1))x^(n+1) ln(x)]_0 ^1  −∫_0 ^1  (1/(n+1)) x^n dx  =−(1/((n+1)^2 )) ⇒ I =−Σ_(n=1) ^∞    (((−1)^(n−1) )/n) (1/((n+1)^2 ))  I = Σ_(n=1) ^∞      (((−1)^n )/(n(n+1)^2 )) .
$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\Rightarrow{ln}\left(\mathrm{1}+{x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:+\lambda\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}{x}^{{n}} \:+\lambda \\ $$$$\lambda=\mathrm{0}\:\Rightarrow\:{ln}\left(\mathrm{1}+{x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{{n}} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}{x}^{{n}} \right){ln}\left({x}\right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {ln}\left({x}\right){dx}\:\:\:{let}\:{integrate}\:{by}\:{parts} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{ln}\left({x}\right){dx}\:=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} {ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}} {dx} \\ $$$$=−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:{I}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${I}\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *