let-give-I-0-dx-x-2-i-2-1-extract-Re-I-and-Im-I-2-find-the-value-of-I-3-calculate-Re-I-and-Im-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36167 by abdo mathsup 649 cc last updated on 29/May/18 letgiveI=∫0∞dx(x2+i)21)extractRe(I)andIm(I)2)findthevalueofI3)calculateRe(I)andIm(I). Commented by maxmathsup by imad last updated on 22/Aug/18 1)wehaveI=∫0∞(x2−i)2(x2+i)2(x2−i)2dx=∫0∞x4−2ix2−1(x4+1)2dx=∫0∞x4−1(x4+1)2dx+i∫0∞−2x2(x4+1)2dx⇒Re(I)=∫0∞x4−1(x4+1)2dxandIm(I)=∫0∞−2x2(x4+1)2dx Commented by maxmathsup by imad last updated on 22/Aug/18 2)wehave2I=∫−∞+∞dx(x2+i)2letconsiderthecomplexfunctionφ(z)=1(z2+i)2⇒φ(z)=1(z2−(−i)2)2=1(z−−i)2(z+−i)2=1(z−e−iπ4)2(z+e−iπ4)2sothepolesofφare+−e−iπ4(doubles)⇒∫−∞+∞φ(z)dz=2iπRes(φ,−e−iπ4)butRes(φ,e−iπ4)=limz→−e−iπ41(2−1)!{(z+e−iπ4)2φ(z)}(1)=limz→−e−iπ4{(z−e−iπ4)−2}(1)=limz→−e−iπ4−2(z−e−iπ4)−3=−2(−2e−iπ4)−3=−2(−2)3ei3π4=14ei3π4=14{cos(3π4)+isin(3π4)}=14{−12+i2}⇒∫−∞+∞φ(z)dz=2iπ4{−12+i2}=iπ2{−12+i2}=2I⇒I=iπ4{−12+i2}=−π42−π42i3)wehaveI=Re(I)+iIm(I)⇒Re(I)=−π42andIm(I)=−π42 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lnx-x-1-dx-Next Next post: let-A-t-sin-xt-x-1-i-2-dx-with-t-from-R-2-calculate-A-t-2-extract-Re-A-t-and-Im-A-t-3-find-the-value-of-cos-3x-x-1-i-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.