Menu Close

let-give-I-0-dx-x-2-i-2-1-extract-Re-I-and-Im-I-2-find-the-value-of-I-3-calculate-Re-I-and-Im-I-




Question Number 36167 by abdo mathsup 649 cc last updated on 29/May/18
let give  I  = ∫_0 ^∞    (dx/((x^2  +i)^2 ))  1) extract Re(I) and Im(I)  2) find the value of I  3) calculate Re(I) and Im(I) .
letgiveI=0dx(x2+i)21)extractRe(I)andIm(I)2)findthevalueofI3)calculateRe(I)andIm(I).
Commented by maxmathsup by imad last updated on 22/Aug/18
1) we have  I =∫_0 ^∞    (((x^2 −i)^2 )/((x^2  +i)^2 (x^2 −i)^2 ))dx  =∫_0 ^∞     ((x^4  −2ix^2  −1)/((x^4  +1)^2 )) dx  = ∫_0 ^∞   ((x^4 −1)/((x^4  +1)^2 )) dx +i ∫_0 ^∞    ((−2x^2 )/((x^4  +1)^2 )) dx ⇒  Re(I) =∫_0 ^∞     ((x^4 −1)/((x^4  +1)^2 )) dx  and  Im(I) =∫_0 ^∞    ((−2x^2 )/((x^4  +1)^2 ))dx
1)wehaveI=0(x2i)2(x2+i)2(x2i)2dx=0x42ix21(x4+1)2dx=0x41(x4+1)2dx+i02x2(x4+1)2dxRe(I)=0x41(x4+1)2dxandIm(I)=02x2(x4+1)2dx
Commented by maxmathsup by imad last updated on 22/Aug/18
2) we have 2I =∫_(−∞) ^(+∞)    (dx/((x^2 +i)^2 ))  let consider the complex function  ϕ(z) = (1/((z^2 +i)^2 ))  ⇒ϕ(z) = (1/((z^2 −((√(−i)))^2 )^2 )) =(1/((z−(√(−i)))^2 (z+(√(−i)))^2 ))  = (1/((z−e^(−((iπ)/4)) )^2 (z +e^(−((iπ)/4)) )^2 ))  so the poles of ϕ are +^−  e^(−((iπ)/4))   (doubles) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,−e^(−((iπ)/4)) )  but  Res(ϕ,e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )      (1/((2−1)!)){(z+e^(−((iπ)/4)) )^2 ϕ(z)}^((1))   =lim_(z→−e^(−((iπ)/4)) ) {(z−e^(−((iπ)/4)) )^(−2) }^((1))  =lim_(z→−e^(−((iπ)/4)) )    −2 (z−e^(−((iπ)/4)) )^(−3)   =−2(−2 e^(−((iπ)/4)) )^(−3)  =((−2)/((−2)^3 )) e^(i((3π)/4))   =(1/4) e^((i3π)/4)  =(1/4){cos(((3π)/4)) +isin(((3π)/4))}  =(1/4){−(1/( (√2))) +(i/( (√2)))} ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/4){−(1/( (√2))) +(i/( (√2)))}=((iπ)/2){−(1/( (√2))) +(i/( (√2)))} =2I ⇒  I =((iπ)/4){−(1/( (√2))) +(i/( (√2)))} =−(π/(4(√2))) −(π/(4(√2))) i  3) we have I =Re(I) +iIm(I) ⇒Re(I) =−(π/(4(√2))) and Im(I) =−(π/(4(√2)))
2)wehave2I=+dx(x2+i)2letconsiderthecomplexfunctionφ(z)=1(z2+i)2φ(z)=1(z2(i)2)2=1(zi)2(z+i)2=1(zeiπ4)2(z+eiπ4)2sothepolesofφare+eiπ4(doubles)+φ(z)dz=2iπRes(φ,eiπ4)butRes(φ,eiπ4)=limzeiπ41(21)!{(z+eiπ4)2φ(z)}(1)=limzeiπ4{(zeiπ4)2}(1)=limzeiπ42(zeiπ4)3=2(2eiπ4)3=2(2)3ei3π4=14ei3π4=14{cos(3π4)+isin(3π4)}=14{12+i2}+φ(z)dz=2iπ4{12+i2}=iπ2{12+i2}=2II=iπ4{12+i2}=π42π42i3)wehaveI=Re(I)+iIm(I)Re(I)=π42andIm(I)=π42

Leave a Reply

Your email address will not be published. Required fields are marked *