Menu Close

let-give-I-n-0-1-x-n-1-x-n-dx-1-prove-that-lim-n-gt-I-n-0-2-calculate-I-n-I-n-1-3-find-n-1-1-n-1-n-




Question Number 27666 by abdo imad last updated on 12/Jan/18
let give I_n = ∫_0 ^1   (x^n /(1+x^n ))dx  (1) prove that  lim_(n−>∝) I_n =0  (2)calculate I_n  +I_(n+1)   (3) find  Σ_(n=1) ^∝ (((−1)^(n−1) )/n) .
$${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$$\left(\mathrm{1}\right)\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} {I}_{{n}} =\mathrm{0} \\ $$$$\left(\mathrm{2}\right){calculate}\:{I}_{{n}} \:+{I}_{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *