Menu Close

let-give-I-n-0-dt-1-t-2-n-with-n-integr-and-n-1-1-prove-the-convergence-of-I-n-2-find-lim-n-I-n-3-study-the-convergence-of-the-serie-n-1-1-n-I-n-




Question Number 31966 by abdo imad last updated on 17/Mar/18
let give I_n = ∫_0 ^∞   (dt/((1+t^2 )^n )) with n integr and n≥1  1) prove the convergence of I_n   2)find lim_(n→∞)   I_n   3) study the convergence of the serie  Σ_(n=1) ^∞ (−1)^n   I_n  .
$${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{convergence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow\infty} \:\:{I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:{I}_{{n}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *