Menu Close

let-give-I-n-n-1-1-1-n-f-x-n-dx-with-f-is-numerical-function-integrable-on-1-e-prove-that-lim-n-gt-I-n-1-e-f-t-t-dt-




Question Number 27497 by abdo imad last updated on 07/Jan/18
let give I_n = n ∫_1 ^(1+(1/n)) f(x^n )dx with f is numerical  function integrable on[1,e] .prove that  lim_(n−>∝)   I_n  = ∫_1 ^e   ((f(t))/t) dt.
$${let}\:{give}\:{I}_{{n}} =\:{n}\:\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} {f}\left({x}^{{n}} \right){dx}\:{with}\:{f}\:{is}\:{numerical} \\ $$$${function}\:{integrable}\:{on}\left[\mathrm{1},{e}\right]\:.{prove}\:{that} \\ $$$${lim}_{{n}−>\propto} \:\:{I}_{{n}} \:=\:\int_{\mathrm{1}} ^{{e}} \:\:\frac{{f}\left({t}\right)}{{t}}\:{dt}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *