Menu Close

let-give-I-x-1-t-E-t-t-x-1-dt-prove-that-x-x-x-1-xI-x-then-chow-that-x-1-x-1-ew-x-gt-1-we-remind-x-n-1-1-n-x-and-x-gt-1-




Question Number 26571 by abdo imad last updated on 26/Dec/17
let give  I(x)=  ∫_1 ^∝  ((t−E(t))/t^(x+1) )dt   prove that  ξ(x)= (x/(x−1)) −xI(x) then chow that (x−1)_(x−1^(+ ew) ) ξ(x)−−>1  we remind  ξ(x) = Σ_(n≥1)  (1/n^x )   and  x>1
letgiveI(x)=1tE(t)tx+1dtprovethatξ(x)=xx1xI(x)thenchowthat(x1)x1+ewξ(x)>1weremindξ(x)=n11nxandx>1
Commented by abdo imad last updated on 02/Jan/18
we have I(x)= ∫_1 ^∝ (dt/t^x ) − ∫_1 ^∝  ((E(t))/t^(x+1) )dt  but  ∫_1 ^∝ (dt/t^x ) = ∫_1 ^∝  t^(−x) dt =   [(1/(1−x)) t^(1−x) ]_(t=1) ^(t−>∝) =  (1/(x−1))  ∫_1 ^∝  ((E(t))/t^(x+1) )dt= lim_(n−>∝)   A_n   with =  A_n   = Σ_(k=1) ^(n−1)  ∫_k ^(k+1)  (k/t^(x+1) )dt =Σ_(k=1) ^(n−1) k ∫_k ^(k+1) t^(−x−1) dt  = Σ_(k=1) ^(n−1) k[ −(1/x) t^(−x)   ]_k ^(k+1)   = Σ_(k=1) ^(k=n−1) (k/x)( (1/k^x ) − (1/((k+1)^x )))  x A_n = Σ_(k=1) ^(k=n−1)  (1/k^(x−1) ) − Σ_(k=1) ^(n−1)   ((k+1−1)/((k+1)^x ))  = Σ_(k=1) ^(k=n−1) (1/k^(x−1) )  − Σ_(k=1) ^(n−1)   (1/((k+1)^(x−1) )) +Σ_(k=1) ^(n−1)  (1/((k+1)^x ))  = Σ_(k=1) ^(n−1)  (1/k^(x−1) ) − Σ_(k=2) ^n    (1/k^(x−1) ) + Σ_(k=2) ^n  (1/k^x )  =1− (1/n^(x−1) ) + Σ_(k=2) ^n  (1/k^x ) ⇒lim_(n−>∝)   = ((ξ(x))/x)  I(x)= (1/(x−1)) −((ξ(x))/x)  ⇒xI(x) = (x/(x−1)) −ξ(x)  ⇒ξ(x)= (x/(x−1)) −xI(x)  ⇒  (x−1)ξ(x)  =x −x(x−1) I(x)  ⇒lim_(x−>1^+ )   (x−1)ξ(x)= 1 .
wehaveI(x)=1dttx1E(t)tx+1dtbut1dttx=1txdt=[11xt1x]t=1t>∝=1x11E(t)tx+1dt=limn>∝Anwith=An=k=1n1kk+1ktx+1dt=k=1n1kkk+1tx1dt=k=1n1k[1xtx]kk+1=k=1k=n1kx(1kx1(k+1)x)xAn=k=1k=n11kx1k=1n1k+11(k+1)x=k=1k=n11kx1k=1n11(k+1)x1+k=1n11(k+1)x=k=1n11kx1k=2n1kx1+k=2n1kx=11nx1+k=2n1kxlimn>∝=ξ(x)xI(x)=1x1ξ(x)xxI(x)=xx1ξ(x)ξ(x)=xx1xI(x)(x1)ξ(x)=xx(x1)I(x)limx>1+(x1)ξ(x)=1.

Leave a Reply

Your email address will not be published. Required fields are marked *