Menu Close

let-give-lt-1-and-u-n-0-pi-cos-nx-1-2-cosx-2-prove-that-n-0-u-n-is-convergent-and-find-its-sum-




Question Number 31747 by abdo imad last updated on 13/Mar/18
let give ∣λ∣<1 and u_n = ∫_0 ^π   ((cos(nx))/(1−2λ cosx +λ^2 ))  prove that Σ_(n=0) ^∞  u_n  is convergent and find its sum .
$${let}\:{give}\:\mid\lambda\mid<\mathrm{1}\:{and}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda\:{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$${prove}\:{that}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum}\:. \\ $$
Commented by abdo imad last updated on 14/Mar/18
u_n = ∫_0 ^π     ((cos(nx))/(1−2λcosx +λ^2 )) dx .
$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} }\:{dx}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *