Menu Close

let-give-n-inyehr-natural-1-find-tbe-value-of-A-n-0-dx-x-2-1-x-2-2-x-2-n-




Question Number 37601 by prof Abdo imad last updated on 15/Jun/18
let give n inyehr natural≥1 find tbe value of  A_n = ∫_0 ^∞        (dx/((x^2 +1)(x^(2 ) +2)....(x^2  +n)))
letgiveninyehrnatural1findtbevalueofAn=0dx(x2+1)(x2+2).(x2+n)
Commented by math khazana by abdo last updated on 17/Jun/18
2 A_n =∫_(−∞) ^(+∞)       (dx/((x^2  +1)(x^2  +2)....(x^2  +n)))  let ϕ(z)  = (1/((z^2  +1)(z^2  +2).....(z^2  +n)))  ϕ(z)= (1/(Π_(k=1) ^n (z^2  +k)))= (1/(Π_(k=1) ^n (z−i(√k))(z+i(√k))))  = (1/(Π_(k=1) ^n (z−i(√k))Π_(k=1) ^n  (z +i(√k)))) so the poles of  ϕ are i(√k)  and −i(√k)   with k∈{1,2,...,n}  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Σ_(z_k ∈w^+ )  Res(ϕ,z_k )with  w^+ ={z∈C/ Im(z)>0}  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Σ_(k=1) ^n  Res(ϕ,i(√k))  Res(ϕ,i(√k)) = (1/(p^′ (i(√k)))) with   p(x)=(x^2 +1)(x^2  +2)...(x^2  +n)  let q(t)=(t+1)(t+2)....(t+n) ⇒  q^′ (t) = Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (x+p)  p(x)=q(x^2 )⇒p^′ (x) =2x q^′ (x^2 ) ⇒  p^′ (x) =2x Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (x^2  +p) ⇒  p^′ (i(√m)) =2i(√m)Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (p−m)  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ Σ_(m=1) ^n    (1/(2i(√m))){Σ_(k=1) ^n Π_(p=1_(p≠−k) ) ^n (p−m)}  = (π/( (√m))) Σ_(m=1) ^n { Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (p−m)}.
2An=+dx(x2+1)(x2+2).(x2+n)letφ(z)=1(z2+1)(z2+2)..(z2+n)φ(z)=1k=1n(z2+k)=1k=1n(zik)(z+ik)=1k=1n(zik)k=1n(z+ik)sothepolesofφareikandikwithk{1,2,,n}+φ(z)dz=2iπzkw+Res(φ,zk)withw+={zC/Im(z)>0}+φ(z)dz=2iπk=1nRes(φ,ik)Res(φ,ik)=1p(ik)withp(x)=(x2+1)(x2+2)(x2+n)letq(t)=(t+1)(t+2).(t+n)q(t)=k=1np=1pkn(x+p)p(x)=q(x2)p(x)=2xq(x2)p(x)=2xk=1np=1pkn(x2+p)p(im)=2imk=1np=1pkn(pm)+φ(z)dz=2iπm=1n12im{k=1np=1pkn(pm)}=πmm=1n{k=1np=1pkn(pm)}.
Commented by math khazana by abdo last updated on 17/Jun/18
∫_(−∞) ^(+∞)  ϕ(z)dz =(π/( (√m)))Σ_(m=1) ^n   { Σ_(m=1) ^n  Π_(p=1) ^n (p−m)}^(−1)   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπΣ_(m=1) ^n   (1/(2i(√m)Σ_(k=1) ^n Π_(p=1_(p≠−k) ) ^n (p−m)))  =Σ_(m=1) ^n   (π/( (√m))){ Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (p−m)}^(−1)
+φ(z)dz=πmm=1n{m=1np=1n(pm)}1+φ(z)dz=2iπm=1n12imk=1np=1pkn(pm)=m=1nπm{k=1np=1pkn(pm)}1

Leave a Reply

Your email address will not be published. Required fields are marked *