let-give-n-inyehr-natural-1-find-tbe-value-of-A-n-0-dx-x-2-1-x-2-2-x-2-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37601 by prof Abdo imad last updated on 15/Jun/18 letgiveninyehrnatural⩾1findtbevalueofAn=∫0∞dx(x2+1)(x2+2)….(x2+n) Commented by math khazana by abdo last updated on 17/Jun/18 2An=∫−∞+∞dx(x2+1)(x2+2)….(x2+n)letφ(z)=1(z2+1)(z2+2)…..(z2+n)φ(z)=1∏k=1n(z2+k)=1∏k=1n(z−ik)(z+ik)=1∏k=1n(z−ik)∏k=1n(z+ik)sothepolesofφareikand−ikwithk∈{1,2,…,n}∫−∞+∞φ(z)dz=2iπ∑zk∈w+Res(φ,zk)withw+={z∈C/Im(z)>0}∫−∞+∞φ(z)dz=2iπ∑k=1nRes(φ,ik)Res(φ,ik)=1p′(ik)withp(x)=(x2+1)(x2+2)…(x2+n)letq(t)=(t+1)(t+2)….(t+n)⇒q′(t)=∑k=1n∏p=1p≠−kn(x+p)p(x)=q(x2)⇒p′(x)=2xq′(x2)⇒p′(x)=2x∑k=1n∏p=1p≠−kn(x2+p)⇒p′(im)=2im∑k=1n∏p=1p≠−kn(p−m)∫−∞+∞φ(z)dz=2iπ∑m=1n12im{∑k=1n∏p=1p≠−kn(p−m)}=πm∑m=1n{∑k=1n∏p=1p≠−kn(p−m)}. Commented by math khazana by abdo last updated on 17/Jun/18 ∫−∞+∞φ(z)dz=πm∑m=1n{∑m=1n∏p=1n(p−m)}−1∫−∞+∞φ(z)dz=2iπ∑m=1n12im∑k=1n∏p=1p≠−kn(p−m)=∑m=1nπm{∑k=1n∏p=1p≠−kn(p−m)}−1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: n-integr-natural-calculate-0-dx-x-1-x-2-x-n-Next Next post: D-2-4D-y-x-2-e-2x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.