Menu Close

let-give-P-n-x-k-0-2n-1-1-2-1-k-1-x-k-and-Q-n-x-1-x-2-x-2-3-x-n-n-1-prove-that-Q-n-divide-P-n-




Question Number 28311 by abdo imad last updated on 23/Jan/18
let give P_n (x)= Σ_(k=0) ^(2n)  (1+(1/2) +...+(1/(k+1)))x^k   and  Q_n (x)= 1+(x/2)+(x^2 /3) +...(x^n /(n+1))  .prove that Q_(n )  divide P_n .
$${let}\:{give}\:{P}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+…+\frac{\mathrm{1}}{{k}+\mathrm{1}}\right){x}^{{k}} \:\:{and} \\ $$$${Q}_{{n}} \left({x}\right)=\:\mathrm{1}+\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\:+…\frac{{x}^{{n}} }{{n}+\mathrm{1}}\:\:.{prove}\:{that}\:{Q}_{{n}\:} \:{divide}\:{P}_{{n}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *