Menu Close

let-give-P-n-x-x-1-2n-x-2-n-1-and-Q-x-x-2-3x-2-find-R-x-P-n-x-R-x-Q-x-




Question Number 28312 by abdo imad last updated on 23/Jan/18
let give  P_n (x)=(x+1)^(2n)  +(x+2)^n −1 and  Q(x)= x^2  +3x +2  find R(x) /P_n (x)=R(x) Q(x) .
letgivePn(x)=(x+1)2n+(x+2)n1andQ(x)=x2+3x+2findR(x)/Pn(x)=R(x)Q(x).
Answered by sma3l2996 last updated on 24/Jan/18
P(x)=R(x)Q(x)  so  R(x)=((P(x))/(Q(x)))  R(x)=(((x+1)^(2n) )/(x^2 +3x+2))+(((x+2)^n )/(x^2 +3x+2))−(1/(x^2 +3x+2))  we have  x^2 +3x+2=(x+1)(x+2)  so R(x)=(((x+1)^(2n−1) )/(x+2))+(((x+2)^(n−1) )/(x+1))−(1/((x+1)(x+2)))  let′s put   t=x+1   so  x+2=t+1  so  t^(2n−1) =(t^(2n−2) −t^(2n−3) +t^(2n−4) −...+1)(t+1)−1  so   (x+1)^(2n−1) =(Σ_(k=2) ^(2n) (−1)^k (x+1)^(2n−k) )(x+2)−1  (((x+1)^(2n−1) )/(x+2))=Σ_(k=2) ^(2n) (−1)^k (x+1)^(2n−k) −(1/(x+2))  samething   for  (((x+2)^(n−1) )/(x+1))=Σ_(k=2) ^n (x+2)^(n−k) +(1/(x+1))  so  R(x)=Σ_(k=2) ^(2n) (−1)^k (x+1)^(2n−k) +Σ_(k=2) ^n (x+2)^(n−k) +(1/(x+1))−(1/(x+2))−(1/((x+1)(x+2)))  (1/((x+2)(x+1)))=(1/(x+1))−(1/(x+2))  so    R(x)=Σ_(k=2) ^n (x+2)^(n−k) +Σ_(k=2) ^(2n) (−1)^k (x+1)^(2n−k)
P(x)=R(x)Q(x)soR(x)=P(x)Q(x)R(x)=(x+1)2nx2+3x+2+(x+2)nx2+3x+21x2+3x+2wehavex2+3x+2=(x+1)(x+2)soR(x)=(x+1)2n1x+2+(x+2)n1x+11(x+1)(x+2)letsputt=x+1sox+2=t+1sot2n1=(t2n2t2n3+t2n4+1)(t+1)1so(x+1)2n1=(2nk=2(1)k(x+1)2nk)(x+2)1(x+1)2n1x+2=2nk=2(1)k(x+1)2nk1x+2samethingfor(x+2)n1x+1=nk=2(x+2)nk+1x+1soR(x)=2nk=2(1)k(x+1)2nk+nk=2(x+2)nk+1x+11x+21(x+1)(x+2)1(x+2)(x+1)=1x+11x+2soR(x)=nk=2(x+2)nk+2nk=2(1)k(x+1)2nk

Leave a Reply

Your email address will not be published. Required fields are marked *