Menu Close

let-give-p-x-1-ix-1-ix-n-1-itan-1-itan-factorize-p-x-inside-C-x-




Question Number 27384 by abdo imad last updated on 05/Jan/18
let give  p(x)= (((1+ix)/(1−ix)))^n − ((1+itanα )/(1−itanα))  factorize p(x) inside  C[x].
letgivep(x)=(1+ix1ix)n1+itanα1itanαfactorizep(x)insideC[x].
Commented by abdo imad last updated on 07/Jan/18
roots of p(x)    p(x)=0⇔  (((1+ix)/(1−ix)) )^n = ((1+itanα)/(1−itanα))=((cosα +isinα)/(cosα −isinα)) =e^(i(2α))   let put  ((1+ix)/(1−ix))= t so p(x)=0⇔ t^n = e^(i(2α))  wich have for solutions  t_k =e^(i2(α+kπ)(1/n))     and  k∈[[0,n−1]] but ((1+ix)/(1−ix))=t_k   ⇔ 1+ix=(1−ix)t_k  ⇔ ix(1+t_k )=t_k  −1  ix =((t_k −1)/(1+t_k ))    ⇔x =−i((t_k −1)/(1+tk)) =i ((1−t_k )/(1+t_k )) so the complex wich   verify p(x)=0 are x_k = i ((1−t_k )/(1+t_k ))    and k∈[[0,n−1]]  but x_k = i ((1−e^(i2((α+kπ)/n)) )/(1+ e^(i2((α+kπ)/n)) )) =i((1−cos(2((α+kπ)/n)) −i sin(2((α+kπ)/n)))/(1+cos(2((α+kπ)/n))+isin(2((α+kπ)/n))))  x_(k ) =tan(((α+kπ)/n))    with k from[[0,n−1]]  so p(x)= λ  Π_(k=0) ^(n−1) (x−tan(((α+kπ)/n)))  .
rootsofp(x)p(x)=0(1+ix1ix)n=1+itanα1itanα=cosα+isinαcosαisinα=ei(2α)letput1+ix1ix=tsop(x)=0tn=ei(2α)wichhaveforsolutionstk=ei2(α+kπ)1nandk[[0,n1]]but1+ix1ix=tk1+ix=(1ix)tkix(1+tk)=tk1ix=tk11+tkx=itk11+tk=i1tk1+tksothecomplexwichverifyp(x)=0arexk=i1tk1+tkandk[[0,n1]]butxk=i1ei2α+kπn1+ei2α+kπn=i1cos(2α+kπn)isin(2α+kπn)1+cos(2α+kπn)+isin(2α+kπn)xk=tan(α+kπn)withkfrom[[0,n1]]sop(x)=λk=0n1(xtan(α+kπn)).
Answered by sma3l2996 last updated on 06/Jan/18
p(x)=(((i(−i+x))/(−i(i+x))))^n −((cosα+isinα)/(cosα−isinα))=(((−(−2i+i+x))/(i+x)))^n −(e^(iα) /e^(−iα) )  p(x)=(−1)^n (1−(2/(i+x)))^n −e^(2iα)   p(x)=(−1)^n Σ_(k=0) ^n ((2/(i+x)))^k ^n C_k −e^(2iα)
p(x)=(i(i+x)i(i+x))ncosα+isinαcosαisinα=((2i+i+x)i+x)neiαeiαp(x)=(1)n(12i+x)ne2iαp(x)=(1)nnk=0(2i+x)knCke2iα

Leave a Reply

Your email address will not be published. Required fields are marked *