Menu Close

let-give-S-n-1-i-lt-j-n-1-i-2-j-2-find-lim-n-gt-S-n-




Question Number 26749 by abdo imad last updated on 28/Dec/17
let give  S_n  =  Σ_(1≤i<j≤n)    (1/(i^2 j^2 ))   find lim_(n−>∝)   S_n   .
$${let}\:{give}\:\:{S}_{{n}} \:=\:\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\:\frac{\mathrm{1}}{{i}^{\mathrm{2}} {j}^{\mathrm{2}} }\:\:\:{find}\:{lim}_{{n}−>\propto} \:\:{S}_{{n}} \:\:. \\ $$
Commented by abdo imad last updated on 02/Jan/18
we have ( Σ_(k=1) ^(k=n)  (1/k^2 ) )^2 = Σ_(k=1) ^n  (1/k^4 )  + 2 Σ_(1≤i<j≤n)   (1/(i^(2 ) j^2 ))  S_n = (1/2)(( Σ_(k=1) ^n  (1/k^2 ))^2 − Σ_(k=1) ^(k=n)  (1/k^4 ) )  ⇒lim_(n−>∝)  S_n  = (1/2)(  (ξ(2))^2 −ξ(4))  we know that ξ(2)= (π^2 /6)  and  ξ(4) =  (π^4 /(90))  ⇒ lim_(n−>∝)  S_n    = (1/2)(  (π^4 /(36)) − (π^4 /(90))  ).
$${we}\:{have}\:\left(\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\right)^{\mathrm{2}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{4}} }\:\:+\:\mathrm{2}\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\frac{\mathrm{1}}{{i}^{\mathrm{2}\:} {j}^{\mathrm{2}} } \\ $$$${S}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}}\left(\left(\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)^{\mathrm{2}} −\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{4}} }\:\right) \\ $$$$\Rightarrow{lim}_{{n}−>\propto} \:{S}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\:\:\left(\xi\left(\mathrm{2}\right)\right)^{\mathrm{2}} −\xi\left(\mathrm{4}\right)\right)\:\:{we}\:{know}\:{that}\:\xi\left(\mathrm{2}\right)=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$${and}\:\:\xi\left(\mathrm{4}\right)\:=\:\:\frac{\pi^{\mathrm{4}} }{\mathrm{90}} \\ $$$$\Rightarrow\:{lim}_{{n}−>\propto} \:{S}_{{n}} \:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\:\:\frac{\pi^{\mathrm{4}} }{\mathrm{36}}\:−\:\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:\:\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *