Menu Close

let-give-S-n-1-i-lt-j-n-1-i-2-j-2-find-lim-n-gt-S-n-




Question Number 26749 by abdo imad last updated on 28/Dec/17
let give  S_n  =  Σ_(1≤i<j≤n)    (1/(i^2 j^2 ))   find lim_(n−>∝)   S_n   .
letgiveSn=1i<jn1i2j2findlimn>∝Sn.
Commented by abdo imad last updated on 02/Jan/18
we have ( Σ_(k=1) ^(k=n)  (1/k^2 ) )^2 = Σ_(k=1) ^n  (1/k^4 )  + 2 Σ_(1≤i<j≤n)   (1/(i^(2 ) j^2 ))  S_n = (1/2)(( Σ_(k=1) ^n  (1/k^2 ))^2 − Σ_(k=1) ^(k=n)  (1/k^4 ) )  ⇒lim_(n−>∝)  S_n  = (1/2)(  (ξ(2))^2 −ξ(4))  we know that ξ(2)= (π^2 /6)  and  ξ(4) =  (π^4 /(90))  ⇒ lim_(n−>∝)  S_n    = (1/2)(  (π^4 /(36)) − (π^4 /(90))  ).
wehave(k=1k=n1k2)2=k=1n1k4+21i<jn1i2j2Sn=12((k=1n1k2)2k=1k=n1k4)limn>∝Sn=12((ξ(2))2ξ(4))weknowthatξ(2)=π26andξ(4)=π490limn>∝Sn=12(π436π490).

Leave a Reply

Your email address will not be published. Required fields are marked *