Menu Close

let-give-S-n-k-1-n-1-sin-kpi-n-find-lim-n-S-n-n-




Question Number 29167 by abdo imad last updated on 04/Feb/18
let give S_n = Σ_(k=1) ^(n−1) sin(((kπ)/n))  find lim_(n→+∞)   (S_n /n)  .
$${let}\:{give}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {sin}\left(\frac{{k}\pi}{{n}}\right)\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{S}_{{n}} }{{n}}\:\:. \\ $$
Commented by abdo imad last updated on 08/Feb/18
S_n =Im( Σ_(k=0) ^(n−1)   e^(i((kπ)/n)) )   but  Σ_(k=0) ^(n−1)   e^(i((kπ)/n))  = Σ_(k=0) ^(n−1)  (e^(i(π/n)) )^k =((1− e^(iπ) )/(1− e^(i(π/n)) ))=(2/(1−cos((π/n))−isin((π/n))))  =    (2/(2sin^2 ((π/(2n))) −2isin((π/(2n)))cos((π/(2n)))))  =   (1/(−isin((π/(2n)))(e^(i(π/(2n))) )))=((i e^(−i(π/(2n))) )/(sin((π/(2n)))))=i((cos((π/(2n))) −isin((π/(2n))))/(sin((π/(2n))))) ⇒  S_n = (1/(tan((π/(2n)))))  we have  (S_n /n)= (1/(ntan((π/(2n)))))  but tan((π/(2n)))∼ (π/(2n)) (n→+∞) and n tan((π/(2n)))∼ (π/2) ⇒  lim_(n→+∞)    (S_n /n) = (2/π)  .
$${S}_{{n}} ={Im}\left(\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{{i}\frac{{k}\pi}{{n}}} \right)\:\:\:{but} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{{i}\frac{{k}\pi}{{n}}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({e}^{{i}\frac{\pi}{{n}}} \right)^{{k}} =\frac{\mathrm{1}−\:{e}^{{i}\pi} }{\mathrm{1}−\:{e}^{{i}\frac{\pi}{{n}}} }=\frac{\mathrm{2}}{\mathrm{1}−{cos}\left(\frac{\pi}{{n}}\right)−{isin}\left(\frac{\pi}{{n}}\right)} \\ $$$$=\:\:\:\:\frac{\mathrm{2}}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}{n}}\right)\:−\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{2}{n}}\right){cos}\left(\frac{\pi}{\mathrm{2}{n}}\right)} \\ $$$$=\:\:\:\frac{\mathrm{1}}{−{isin}\left(\frac{\pi}{\mathrm{2}{n}}\right)\left({e}^{{i}\frac{\pi}{\mathrm{2}{n}}} \right)}=\frac{{i}\:{e}^{−{i}\frac{\pi}{\mathrm{2}{n}}} }{{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)}={i}\frac{{cos}\left(\frac{\pi}{\mathrm{2}{n}}\right)\:−{isin}\left(\frac{\pi}{\mathrm{2}{n}}\right)}{{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)}\:\Rightarrow \\ $$$${S}_{{n}} =\:\frac{\mathrm{1}}{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)}\:\:{we}\:{have}\:\:\frac{{S}_{{n}} }{{n}}=\:\frac{\mathrm{1}}{{ntan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} \\ $$$${but}\:{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)\sim\:\frac{\pi}{\mathrm{2}{n}}\:\left({n}\rightarrow+\infty\right)\:{and}\:{n}\:{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)\sim\:\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:\:\frac{{S}_{{n}} }{{n}}\:=\:\frac{\mathrm{2}}{\pi}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *