Menu Close

let-give-S-n-p-1-p-n-arctan-1-2p-2-find-lim-n-gt-S-n-




Question Number 27189 by abdo imad last updated on 02/Jan/18
let give S_(n ) = Σ_(p=1) ^(p=n)  arctan ((1/(2p^2 )) )  find lim_(n−>∝)  S_n   .
letgiveSn=p=1p=narctan(12p2)findlimn>∝Sn.
Answered by prakash jain last updated on 03/Jan/18
tan^(−1) (1/(2p^2 ))=tan^(−1) (((2p+1)−(2p−1))/(1+(2p+1)(2p+1)))  =tan^(−1) (2p+1)−tan^(−1) (2p−1)  p:1 → tan^(−1) 3−tan^(−1) 1  p:2→tan^(−1) 5−tan^(−1) 3  ⋮  p:n−1→tan^(−1) (2n−1)−tan^(−1) (2n−3)  p:n→tan^(−1) (2n+1)−tan^(−1) (2n−3>1)  Σ_(p=1) ^n tan^(−1) (1/(2p^2 ))=tan^(−1) (2n+1)−tan^(−1) 1  lim_(n→∞) Σ_(p=1) ^n tan^(−1) (1/(2p^2 ))=(π/2)−(π/4)=(π/4)
tan112p2=tan1(2p+1)(2p1)1+(2p+1)(2p+1)=tan1(2p+1)tan1(2p1)p:1tan13tan11p:2tan15tan13p:n1tan1(2n1)tan1(2n3)p:ntan1(2n+1)tan1(2n3>1)np=1tan112p2=tan1(2n+1)tan11limnnp=1tan112p2=π2π4=π4

Leave a Reply

Your email address will not be published. Required fields are marked *