Menu Close

let-give-S-x-n-0-1-n-x-n-x-gt-0-1-study-the-contnuity-derivsbility-limits-at-0-and-2-we-give-0-e-t-2-dt-pi-2-prove-that-x-gt-0-S-x-1-pi-0-e-




Question Number 33352 by caravan msup abdo. last updated on 15/Apr/18
let give S(x)=Σ_(n≥0)  (((−1)^n )/( (√(x+n)))) ,x>0  1)study the contnuity ,derivsbility,limits  at 0^+  and +∞  2) we give ∫_0 ^∞  e^(−t^2 ) dt =((√π)/2) .prove that  ∀ x>0  S(x)=(1/( (√π))) ∫_0 ^∞   (e^(−tx) /( (√t)(1+e^(−t) )))dt .
letgiveS(x)=n0(1)nx+n,x>01)studythecontnuity,derivsbility,limitsat0+and+2)wegive0et2dt=π2.provethatx>0S(x)=1π0etxt(1+et)dt.
Commented by math khazana by abdo last updated on 20/Apr/18
1) let put f_n (x) = (((−1)^n )/( (√(x+n))))   the sequence(f_n ) are continue  nd the serie Σ f_n (x) is convergent( if we take  ϕ(t)= (1/( (√(x+t)))) .ϕ is decreszing  so Σ f_n  is alternating)  its sum S(x) is continue for x>0 also the (f_n ) are  derivables  and f_n ^′ (x) = (−1)^n    ((−1)/(2(x+n)(√(x+n))))  Σ^    f_n ^′ (x) is convergent as a alternating serie so  S is derivable and S^′ (x) = Σ_(n=0) ^∞    (((−1)^(n+1) )/(2(x+n)(√(x+n)))) .  2) we have  ∫_0 ^∞      (e^(−tx) /( (√t)(1+e^(−t) )))dt  = ∫_0 ^∞   (e^(−tx) /( (√t))) (Σ_(n=0) ^∞  (−1)^n  e^(−nt) )dt  = Σ_(n=0) ^∞   (−1)^n     ∫_0 ^∞   (e^(−(n+x)t) /( (√t))) dt (ch.(√t)=u)  =Σ_(n=0) ^∞  (−1)^n   ∫_0 ^∞     (e^(−(n+x)u^2 ) /u) 2udu  = 2 Σ_(n=0) ^∞  (−1)^n   ∫_0 ^∞   e^(−(n+x)u^2 ) du  =_((√(n+x))u =t)   2Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞   e^(−t^2 )   (dt/( (√(n+x))))  = 2 .((√π)/2)  Σ_(n=0) ^∞    (((−1)^n )/( (√(n+x))))  =(√π)  S(x) ⇒  S(x) =(1/( (√π)))  ∫_0 ^∞     (e^(−tx) /( (√t)( 1+e^(−t) )))dt .
1)letputfn(x)=(1)nx+nthesequence(fn)arecontinuendtheserieΣfn(x)isconvergent(ifwetakeφ(t)=1x+t.φisdecreszingsoΣfnisalternating)itssumS(x)iscontinueforx>0alsothe(fn)arederivablesandfn(x)=(1)n12(x+n)x+nfn(x)isconvergentasaalternatingseriesoSisderivableandS(x)=n=0(1)n+12(x+n)x+n.2)wehave0etxt(1+et)dt=0etxt(n=0(1)nent)dt=n=0(1)n0e(n+x)ttdt(ch.t=u)=n=0(1)n0e(n+x)u2u2udu=2n=0(1)n0e(n+x)u2du=n+xu=t2n=0(1)n0et2dtn+x=2.π2n=0(1)nn+x=πS(x)S(x)=1π0etxt(1+et)dt.

Leave a Reply

Your email address will not be published. Required fields are marked *