Menu Close

let-give-S-x-n-1-x-n-n-and-W-x-n-1-1-n-x-n-n-2-calculate-S-x-W-x-in-that-we-know-x-lt-1-




Question Number 27098 by abdo imad last updated on 02/Jan/18
let give S(x) = Σ_(n=1) ^∝ (x^n /n)  and  W(x)=  Σ_(n=1) ^∝ (((−1)^n x^n )/n^2 )  calculate   S(x).W(x).   in that we know /x/<1.
letgiveS(x)=n=1xnnandW(x)=n=1(1)nxnn2calculateS(x).W(x).inthatweknow/x/<1.
Commented by prakash jain last updated on 02/Jan/18
ln (1−x)=−x−(x^2 /2)−...    (A)  =−Σ_(n=1) ^∞ (x^n /n)  ⇒S(x)=−ln (1−x)  ln (1+x)dx=Σ_(n=1) ^∞ (((−1)^(n+1) x^n )/n)   ∫_0 ^x ln (1+x)dx=∫_0 ^x Σ_(n=1) ^∞ (((−1)^(n+1) x^n )/n)   (x+1)ln (1+x)−x=Σ_(n=1) ^∞ (((−1)^(n+1) x^(n+1) )/n^2 )  (x+1)ln (1+x)−x=−xΣ_(n=1) ^∞ (((−1)^n x^n )/n^2 )  W(x)=(((x+1)ln (1+x)−x)/x)  Given ∣x∣<1 both S(x) and W(x)  converge.
ln(1x)=xx22(A)=n=1xnnS(x)=ln(1x)ln(1+x)dx=n=1(1)n+1xnn0xln(1+x)dx=0xn=1(1)n+1xnn(x+1)ln(1+x)x=n=1(1)n+1xn+1n2(x+1)ln(1+x)x=xn=1(1)nxnn2W(x)=(x+1)ln(1+x)xxGivenx∣<1bothS(x)andW(x)converge.
Commented by abdo imad last updated on 04/Jan/18
let calculate S(x)W(x) in form of series we put a_n =(1/n)  and b_n =(((−1)^n )/n^2 )  S(x)W(x)=  Σ_(n=1) ^∝ c_n  x^n    with  c_n  = Σ_(i+j=n) a_i  b_j   c_n = Σ_(i=1) ^(n−1)  a_i   b_(n−i)   S(x)W(x) = Σ_(n=1) ^∝ ( Σ_(i=1) ^(n−1)  (1/i) (((−1)^(n−i) )/((n−i)^2 )) )x^n  .
letcalculateS(x)W(x)informofseriesweputan=1nandbn=(1)nn2S(x)W(x)=n=1cnxnwithcn=i+j=naibjcn=i=1n1aibniS(x)W(x)=n=1(i=1n11i(1)ni(ni)2)xn.

Leave a Reply

Your email address will not be published. Required fields are marked *