Menu Close

let-give-the-d-e-1-x-2-y-3xy-y-0find-a-solution-y-x-deveppable-at-integr-serie-with-x-lt-1-




Question Number 34311 by prof Abdo imad last updated on 03/May/18
let give the d.e. (1+x^2 )y^(′′)  +3xy^′  +y =0find  a solution y(x) deveppable at integr serie   with∣x∣<1 .
$${let}\:{give}\:{the}\:{d}.{e}.\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} \:+\mathrm{3}{xy}^{'} \:+{y}\:=\mathrm{0}{find} \\ $$$${a}\:{solution}\:{y}\left({x}\right)\:{deveppable}\:{at}\:{integr}\:{serie}\: \\ $$$${with}\mid{x}\mid<\mathrm{1}\:. \\ $$
Answered by candre last updated on 04/May/18
y=Σ_(i=0) ^∞ a_i x^i   y′=Σ_(i=0) ^∞ a_(i+1) (i+1)x^i   y′′=Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i   (1+x^2 )Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i +3xΣ_(i=0) ^∞ a_(i+1) (i+1)x^i +Σ_(i=0) ^∞ a_i x^i =0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i +Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^(i+2) +Σ_(i=0) ^∞ 3a_(i+1) (i+1)x^(i+1) +Σ_(i=0) ^∞ a_i x^i =0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i +Σ_(i=2) ^∞ a_i i(i−1)x^i +Σ_(i=1) ^∞ 3a_i ix^i +Σ_(i=0) ^∞ a_i x^i =0  2a_2 +a_0 =0  6a_3 +4a_1 =0  a_(i+2) (i^2 +3i+2)+a_i (i^2 +2i+1)=0   (i≥2)
$${y}=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}} \\ $$$${y}'=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{1}} \left({i}+\mathrm{1}\right){x}^{{i}} \\ $$$${y}''=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} +\mathrm{3}{x}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{1}} \left({i}+\mathrm{1}\right){x}^{{i}} +\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}} =\mathrm{0} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} +\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}+\mathrm{2}} +\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{3}{a}_{{i}+\mathrm{1}} \left({i}+\mathrm{1}\right){x}^{{i}+\mathrm{1}} +\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}} =\mathrm{0} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}+\mathrm{2}} \left({i}+\mathrm{2}\right)\left({i}+\mathrm{1}\right){x}^{{i}} +\underset{{i}=\mathrm{2}} {\overset{\infty} {\sum}}{a}_{{i}} {i}\left({i}−\mathrm{1}\right){x}^{{i}} +\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{3}{a}_{{i}} {ix}^{{i}} +\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} {x}^{{i}} =\mathrm{0} \\ $$$$\mathrm{2}{a}_{\mathrm{2}} +{a}_{\mathrm{0}} =\mathrm{0} \\ $$$$\mathrm{6}{a}_{\mathrm{3}} +\mathrm{4}{a}_{\mathrm{1}} =\mathrm{0} \\ $$$${a}_{{i}+\mathrm{2}} \left({i}^{\mathrm{2}} +\mathrm{3}{i}+\mathrm{2}\right)+{a}_{{i}} \left({i}^{\mathrm{2}} +\mathrm{2}{i}+\mathrm{1}\right)=\mathrm{0}\:\:\:\left({i}\geqslant\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *