Menu Close

let-give-the-function-f-x-x-4-2pi-periodic-and-even-developp-f-atfourier-series-




Question Number 28072 by abdo imad last updated on 20/Jan/18
let give the function  f(x)=x^4    2π periodic and even  developp   f atfourier series.
letgivethefunctionf(x)=x42πperiodicandevendeveloppfatfourierseries.
Commented by abdo imad last updated on 26/Jan/18
f(−x)=f(x) and f 2π periodic so  f(x)=(a_0 /2) + Σ_(n=1) ^(+∞)  a_n  cos(nx)  with  a_(n ) = (2/T) ∫_([T])  f(x)cos(nx)dx   (  T=2π)  a_n  = (1/π) ∫_(−π) ^π x^4  cos(nx)dx = (2/π) ∫_0 ^π  x^4  cos(nx)dx let put  A_p = ∫_0 ^π  x^p cos(nx)dx we know that  A_(2p) = (1/n^2 )( 2pπ^(2p−1) (−1)^n   −2p(2p−1)A_(2p−2) ) so  A_4 = (1/n^2 )( 4 π^3 (−1)^n  −12 A_2   ) but  A_(2 ) = (1/n^2 )( 2π(−1)^n  −2A_0   )=((2π)/n^2 )(−1)^n          ( A_0 =0)  A_4  = (1/n^2 )( 4 π^3 (−1)^n  −((24π)/n^2 )(−1)^n ) so  a_4 =(2/π) A_4 = (2/(πn^2 ))( 4π^3 (−1)^n  −((24π)/n^2 )(−1)^n )  = ((8π^2 )/n^2 )(−1)^n    −((48)/n^4 )(−1)^n    let find a_(0 ) ?  a_0 =(2/π) ∫_0 ^π  x^4 dx= (2/π) (1/5) π^5 =((2π^4 )/5)  and (a_0 /2) =(π^4 /5)   and  x^4  = (π^5 /5) +8π^2  Σ_(n=1) ^(+∞)  (((−1)^n )/n^2 )cos(nx) −48 Σ_(n=1) ^(+∞)  (((−1)^n )/n^4 ) cos(nx).
f(x)=f(x)andf2πperiodicsof(x)=a02+n=1+ancos(nx)withan=2T[T]f(x)cos(nx)dx(T=2π)an=1πππx4cos(nx)dx=2π0πx4cos(nx)dxletputAp=0πxpcos(nx)dxweknowthatA2p=1n2(2pπ2p1(1)n2p(2p1)A2p2)soA4=1n2(4π3(1)n12A2)butA2=1n2(2π(1)n2A0)=2πn2(1)n(A0=0)A4=1n2(4π3(1)n24πn2(1)n)soa4=2πA4=2πn2(4π3(1)n24πn2(1)n)=8π2n2(1)n48n4(1)nletfinda0?a0=2π0πx4dx=2π15π5=2π45anda02=π45andx4=π55+8π2n=1+(1)nn2cos(nx)48n=1+(1)nn4cos(nx).

Leave a Reply

Your email address will not be published. Required fields are marked *