Question Number 28072 by abdo imad last updated on 20/Jan/18
$${let}\:{give}\:{the}\:{function}\:\:{f}\left({x}\right)={x}^{\mathrm{4}} \:\:\:\mathrm{2}\pi\:{periodic}\:{and}\:{even} \\ $$$${developp}\:\:\:{f}\:{atfourier}\:{series}. \\ $$
Commented by abdo imad last updated on 26/Jan/18
$${f}\left(−{x}\right)={f}\left({x}\right)\:{and}\:{f}\:\mathrm{2}\pi\:{periodic}\:{so} \\ $$$${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:{a}_{{n}} \:{cos}\left({nx}\right)\:\:{with} \\ $$$${a}_{{n}\:} =\:\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} \:{f}\left({x}\right){cos}\left({nx}\right){dx}\:\:\:\left(\:\:{T}=\mathrm{2}\pi\right) \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{1}}{\pi}\:\int_{−\pi} ^{\pi} {x}^{\mathrm{4}} \:{cos}\left({nx}\right){dx}\:=\:\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{4}} \:{cos}\left({nx}\right){dx}\:{let}\:{put} \\ $$$${A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{x}^{{p}} {cos}\left({nx}\right){dx}\:{we}\:{know}\:{that} \\ $$$${A}_{\mathrm{2}{p}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{2}{p}\pi^{\mathrm{2}{p}−\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \:\:−\mathrm{2}{p}\left(\mathrm{2}{p}−\mathrm{1}\right){A}_{\mathrm{2}{p}−\mathrm{2}} \right)\:{so} \\ $$$${A}_{\mathrm{4}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{4}\:\pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:−\mathrm{12}\:{A}_{\mathrm{2}} \:\:\right)\:{but} \\ $$$${A}_{\mathrm{2}\:} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}} \:−\mathrm{2}{A}_{\mathrm{0}} \:\:\right)=\frac{\mathrm{2}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \:\:\:\:\:\:\:\:\:\left(\:{A}_{\mathrm{0}} =\mathrm{0}\right) \\ $$$${A}_{\mathrm{4}} \:=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{4}\:\pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:−\frac{\mathrm{24}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \right)\:{so} \\ $$$${a}_{\mathrm{4}} =\frac{\mathrm{2}}{\pi}\:{A}_{\mathrm{4}} =\:\frac{\mathrm{2}}{\pi{n}^{\mathrm{2}} }\left(\:\mathrm{4}\pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:−\frac{\mathrm{24}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$=\:\frac{\mathrm{8}\pi^{\mathrm{2}} }{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \:\:\:−\frac{\mathrm{48}}{{n}^{\mathrm{4}} }\left(−\mathrm{1}\right)^{{n}} \:\:\:{let}\:{find}\:{a}_{\mathrm{0}\:} ? \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{4}} {dx}=\:\frac{\mathrm{2}}{\pi}\:\frac{\mathrm{1}}{\mathrm{5}}\:\pi^{\mathrm{5}} =\frac{\mathrm{2}\pi^{\mathrm{4}} }{\mathrm{5}}\:\:{and}\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:=\frac{\pi^{\mathrm{4}} }{\mathrm{5}}\:\:\:{and} \\ $$$${x}^{\mathrm{4}} \:=\:\frac{\pi^{\mathrm{5}} }{\mathrm{5}}\:+\mathrm{8}\pi^{\mathrm{2}} \:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }{cos}\left({nx}\right)\:−\mathrm{48}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} }\:{cos}\left({nx}\right). \\ $$$$ \\ $$