let-give-the-matrice-A-1-2-2-1-calculate-A-n-then-find-e-A- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 28533 by abdo imad last updated on 26/Jan/18 letgivethematriceA=(1221)calculateAnthenfindeA. Commented by abdo imad last updated on 28/Jan/18 wehaveA=I+2JwithI=(1001)andJ=(0110)wehaveJ2=I⇒J2n=IandJ2n+1=JA=I+2JwiththeconditionIJ=JIAn=(2J+I)n=∑k=0nCnk(2J)k=∑k=0n2kCnkJk=Σ(k=2p…)+∑k=2p+1(…)=∑p=0[n2]22pCn2pI+∑p=0[n−12]22p+1Cn2p+1J=(∑p=0[n2]22pCn2p00∑p=0[n2]22pCn2p)+(0∑p=0[n−12]22p+1Cn2p+1∑p=0[n−12]22p+1Cn2p+10)=(xnynynxn)withxn=∑p=0[n2]22pCn2pandyn=∑p=0[n−12]22p+1Cn2p+1.eA=∑n=0∞Ann!=(Σxnn!Σynn!Σynn!Σxnn!) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-159606Next Next post: study-the-convergence-of-U-n-1-z-n-n-with-z-C- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.