Menu Close

let-give-the-matrice-A-1-2-2-1-calculate-A-n-then-find-e-A-




Question Number 28533 by abdo imad last updated on 26/Jan/18
let give the matrice  A=  (((1         2   )),((2           1)) )  calculate  A^n   then find  e^A  .
letgivethematriceA=(1221)calculateAnthenfindeA.
Commented by abdo imad last updated on 28/Jan/18
we have  A = I  +2J  with   I = (((1       0)),((0        1)) )  and  J=  (((0      1)),((1       0 )) )  we have J^2 = I ⇒ J^(2n)  =I and J^(2n+1) =J  A= I +2J  with the condition IJ=JI  A^n =(2J +I)^n = Σ_(k=0) ^n  C_n ^k  (2J)^k    = Σ_(k=0) ^n  2^k   C_n ^k  J^k  = Σ(_(k=2p) ...) +Σ_(k=2p+1)    (...)  = Σ_(p=0) ^([(n/2)])    2^(2p)  C_n ^(2p ) I  +Σ_(p=0) ^([((n−1)/2)])   2^(2p+1)   C_n ^(2p+1)   J  = (((Σ_(p=0) ^([(n/2)])  2^(2p)  C_n ^(2p)                  0      )),((0                            Σ_(p=0) ^([(n/2)])  2^(2p)  C_n ^(2p) )) )  + (((0                    Σ_(p=0) ^([((n−1)/2)])  2^(2p+1)   C_n ^(2p+1)    )),((Σ_(p=0) ^([((n−1)/2)])  2^(2p+1)  C_n ^(2p+1)                0)) )  =  (((x_n           y_n )),(y_(n                   x_n ) ) )  with   x_n = Σ_(p=0) ^([(n/2)])    2^(2p)   C_n ^(2p)   and y_n =Σ_(p=0) ^([((n−1)/2)])  2^(2p+1)  C_n ^(2p+1)    .  e^A   = Σ_(n=0) ^∞     (A^n /(n!))= ((( Σ (x_n /(n!))            Σ(y_n /(n!))     )),((Σ(y_n /(n!))                  Σ(x_n /(n!)) )) )
wehaveA=I+2JwithI=(1001)andJ=(0110)wehaveJ2=IJ2n=IandJ2n+1=JA=I+2JwiththeconditionIJ=JIAn=(2J+I)n=k=0nCnk(2J)k=k=0n2kCnkJk=Σ(k=2p)+k=2p+1()=p=0[n2]22pCn2pI+p=0[n12]22p+1Cn2p+1J=(p=0[n2]22pCn2p00p=0[n2]22pCn2p)+(0p=0[n12]22p+1Cn2p+1p=0[n12]22p+1Cn2p+10)=(xnynynxn)withxn=p=0[n2]22pCn2pandyn=p=0[n12]22p+1Cn2p+1.eA=n=0Ann!=(Σxnn!Σynn!Σynn!Σxnn!)

Leave a Reply

Your email address will not be published. Required fields are marked *