Menu Close

let-give-the-polynomial-P-x-1-2i-1-ix-n-1-ix-n-find-the-roots-of-P-x-and-factorize-P-x-




Question Number 28267 by abdo imad last updated on 22/Jan/18
let give the polynomial  P(x)= (1/(2i))( (1+ix)^n  −(1−ix)^n ) .find the roots of P(x)  and factorize P(x).
letgivethepolynomialP(x)=12i((1+ix)n(1ix)n).findtherootsofP(x)andfactorizeP(x).
Commented by abdo imad last updated on 23/Jan/18
P(x)=0  (1+ix)^n  =(1 −ix)^n ⇔  ( ((1−ix)/(1+ix)) )^n =1 let put  ((1−ix)/(1+ix))=z  (e)⇔  z^n  =1  wich have for roots   z_k = e^(i((2kπ)/n))       and k∈[[0,n−1]] so the roots of P(x) are the  complexes x_(k ) /  ((1−x_k )/(1+x_k ))=z_k ⇔ 1−x_k =z_k  +z_k x_k   ⇔(1+z_k )x_k = 1−z_k  ⇔ x_k =((1−z_k )/(1+z_k ))=((1−cos(((2kπ)/n))− isin(((2kπ)/n)))/(1+cos(((2kπ)/n))+isin(((2kπ)/n))))  =  ((2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n))))  =((−isin(((kπ)/n))e^(i(π/n)) )/(cos(((kπ)/n))e^(i(π/n)) ))=−itan (((kπ)/n))  so the roots of P(x) are  x_k = −itan(((kπ)/n))  and k∈[[0,n−1]]  P(x)=λ Π_(k=0) ^(n−1)  (x +itan(((kπ)/n)))  let find λ?  we have  2i P(x)= Σ_(k=0) ^n    C_n ^k  (ix)^k  −Σ_(k=0) ^n  C_n ^k (−ix)^k   =Σ_(k=0) ^n   C_n ^k  (i^k   −(−i)^k )x^k  =2iΣ_(p=0) ^([((n−1)/2)])  C_n ^(2p+1) (−1)^p  x^(2p+1)   ⇒  P(x)= Σ_(p=0) ^([((n−1)/2)])   (−1)^p  C_n ^(2p+1)  x^(2p+1)    and  λ= (−1)^([((n−1)/2)])   C_n ^(2[((n−1)/2)]+1)  finally  P(x)=(−1)^([((n−1)/2)])   C_n ^(2[((n−1)/2)]+1) Π_(k=0) ^(k=n−1) ( x+itan(((kπ)/n)))  .
P(x)=0(1+ix)n=(1ix)n(1ix1+ix)n=1letput1ix1+ix=z(e)zn=1wichhaveforrootszk=ei2kπnandk[[0,n1]]sotherootsofP(x)arethecomplexesxk/1xk1+xk=zk1xk=zk+zkxk(1+zk)xk=1zkxk=1zk1+zk=1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=isin(kπn)eiπncos(kπn)eiπn=itan(kπn)sotherootsofP(x)arexk=itan(kπn)andk[[0,n1]]P(x)=λk=0n1(x+itan(kπn))letfindλ?wehave2iP(x)=k=0nCnk(ix)kk=0nCnk(ix)k=k=0nCnk(ik(i)k)xk=2ip=0[n12]Cn2p+1(1)px2p+1P(x)=p=0[n12](1)pCn2p+1x2p+1andλ=(1)[n12]Cn2[n12]+1finallyP(x)=(1)[n12]Cn2[n12]+1k=0k=n1(x+itan(kπn)).
Answered by sma3l2996 last updated on 23/Jan/18
P(x)=(1/(2i))((1+ix)^n −(1−ix)^n )  let′s put  z=1+ix=(√(1+x^2 ))e^(iθ)  with  θ=tan^(−1) x    so P(x)=(1/(2i))(((√(1+x^2 ))e^(iθ) )^n −((√(1+x^2 ))e^(−iθ) )^n )  =((((√(1+x^2 )))^n )/(2i))(e^(inθ) −e^(−inθ) )=((√(1+x^2 )))^n sin(nθ)  P(x)=(1+x^2 )^(n/2) sin(ntan^(−1) (x))
P(x)=12i((1+ix)n(1ix)n)letsputz=1+ix=1+x2eiθwithθ=tan1xsoP(x)=12i((1+x2eiθ)n(1+x2eiθ)n)=(1+x2)n2i(einθeinθ)=(1+x2)nsin(nθ)P(x)=(1+x2)n/2sin(ntan1(x))

Leave a Reply

Your email address will not be published. Required fields are marked *