let-give-the-polynomial-P-x-1-2i-1-ix-n-1-ix-n-find-the-roots-of-P-x-and-factorize-P-x- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 28267 by abdo imad last updated on 22/Jan/18 letgivethepolynomialP(x)=12i((1+ix)n−(1−ix)n).findtherootsofP(x)andfactorizeP(x). Commented by abdo imad last updated on 23/Jan/18 P(x)=0(1+ix)n=(1−ix)n⇔(1−ix1+ix)n=1letput1−ix1+ix=z(e)⇔zn=1wichhaveforrootszk=ei2kπnandk∈[[0,n−1]]sotherootsofP(x)arethecomplexesxk/1−xk1+xk=zk⇔1−xk=zk+zkxk⇔(1+zk)xk=1−zk⇔xk=1−zk1+zk=1−cos(2kπn)−isin(2kπn)1+cos(2kπn)+isin(2kπn)=2sin2(kπn)−2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=−isin(kπn)eiπncos(kπn)eiπn=−itan(kπn)sotherootsofP(x)arexk=−itan(kπn)andk∈[[0,n−1]]P(x)=λ∏k=0n−1(x+itan(kπn))letfindλ?wehave2iP(x)=∑k=0nCnk(ix)k−∑k=0nCnk(−ix)k=∑k=0nCnk(ik−(−i)k)xk=2i∑p=0[n−12]Cn2p+1(−1)px2p+1⇒P(x)=∑p=0[n−12](−1)pCn2p+1x2p+1andλ=(−1)[n−12]Cn2[n−12]+1finallyP(x)=(−1)[n−12]Cn2[n−12]+1∏k=0k=n−1(x+itan(kπn)). Answered by sma3l2996 last updated on 23/Jan/18 P(x)=12i((1+ix)n−(1−ix)n)let′sputz=1+ix=1+x2eiθwithθ=tan−1xsoP(x)=12i((1+x2eiθ)n−(1+x2e−iθ)n)=(1+x2)n2i(einθ−e−inθ)=(1+x2)nsin(nθ)P(x)=(1+x2)n/2sin(ntan−1(x)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-find-P-R-x-P-sinx-sin-2n-1-x-2-find-the-roots-of-P-and-degP-3-decompose-1-P-and-prove-that-2n-1-sin-2n-1-x-k-0-2n-1-k-cos-kpi-2n-1-sinx-sin-kpi-2n-1Next Next post: x-3x-1-x-2-1-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.