Menu Close

let-give-the-polynomial-p-x-x-1-n-x-1-n-with-n-from-N-1-give-the-factorisation-of-p-x-inside-C-x-2-prove-that-k-0-n-1-cotan-kpi-2p-1-1-2p-1-




Question Number 28434 by abdo imad last updated on 25/Jan/18
let give the polynomial p(x)=(x+1)^n −(x−1)^n with n  from N^∗   1) give the factorisation of p(x) inside C[x]  2) prove that Π_(k=0) ^(n−1) cotan(((kπ)/(2p+1)))=(1/( (√(2p+1))))
$${let}\:{give}\:{the}\:{polynomial}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} −\left({x}−\mathrm{1}\right)^{{n}} {with}\:{n} \\ $$$${from}\:{N}^{\ast} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{the}\:{factorisation}\:{of}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{p}+\mathrm{1}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *