Menu Close

let-give-the-sequence-of-integrals-J-n-0-x-n-e-x-2-2-dx-1-prove-that-J-n-n-1-J-n-2-n-2-2-calculate-J-2p-and-J-2p-1-by-using-factoriels-3-prove-that-n-1-J-n-2-J




Question Number 34222 by abdo imad last updated on 03/May/18
let give the sequence of integrals  J_n =∫_0 ^∞  x^n   e^(−(x^2 /2)) dx  1) prove that J_n =(n−1)J_(n−2)    ∀n≥2  2) calculate J_(2p)  and J_(2p+1)  by using factoriels.  3) prove that  ∀n≥1   J_n ^2   ≤J_(n−1)  . J_(n+1) .  4)prove that  ((2^(2p) (p!)^2 )/((2p)!)) (1/( (√(2p+1)))) ≤J_0  ≤ ((2^(2p)  (p!)^2 )/((2p)!)) (1/( (√(2p))))  5) find a equivalent of  ((2^(2p) (p!)^2 )/((2p)!))  (p→+∞)
letgivethesequenceofintegralsJn=0xnex22dx1)provethatJn=(n1)Jn2n22)calculateJ2pandJ2p+1byusingfactoriels.3)provethatn1Jn2Jn1.Jn+1.4)provethat22p(p!)2(2p)!12p+1J022p(p!)2(2p)!12p5)findaequivalentof22p(p!)2(2p)!(p+)
Commented by candre last updated on 03/May/18
J_n =∫_0 ^∞ x^n e^(−(x^2 /2)) dx  u=x^(n−1) ⇒du=(n−1)x^(n−2) dx  dv=xe^(−(x^2 /2)) dx⇒v=−e^(−(x^2 /2))   =−[x^(n−1) e^(−(x^2 /2)) ]_0 ^∞ +(n−1)∫x^(n−2) e^(−(x^2 /2)) dx  =(n−1)J_(n−2)   ∫xe^(−(x^2 /2)) dx=−∫e^u du=−e^u =−e^(−(x^2 /2))   u=−(x^2 /2)⇒du=−xdx
Jn=0xnex22dxu=xn1du=(n1)xn2dxdv=xex22dxv=ex22=[xn1ex22]0+(n1)xn2ex22dx=(n1)Jn2xex22dx=eudu=eu=ex22u=x22du=xdx
Commented by candre last updated on 03/May/18
J_0 =∫_0 ^∞ e^(−(x^2 /2)) dx  J_0 ^2 =(∫_0 ^∞ e^(−(x^2 /2)) dx)^2 =∫_0 ^∞ e^(−x^2 /2) dx∫_0 ^∞ e^(−y^2 /2) dy  =∫_0 ^∞ ∫_0 ^∞ e^(−((x^2 +y^2 )/2)) dxdy  =∫_0 ^(π/2) ∫_0 ^∞ e^(−(r^2 /2)) rdrdθ  =∫_0 ^(π/2) dθ∫_0 ^∞ e^(−r^2 /2) rdr  u=−r^2 /2⇒du=−rdr  =(π/2)∙∫_(−∞) ^0 e^u du  =(π/2)  J_0 =(√(π/2))
J0=0ex22dxJ02=(0ex22dx)2=0ex2/2dx0ey2/2dy=00ex2+y22dxdy=π/200er22rdrdθ=π/20dθ0er2/2rdru=r2/2du=rdr=π20eudu=π2J0=π2
Commented by candre last updated on 03/May/18
J_(2p) :  J_2 =1∙J_0   J_4 =3∙J_2 =3∙1∙J_0   J_6 =5∙J_4 =5∙3∙1∙J_0   J_(2p) =(2p−1)!!J_0   J_(2p+1) :  J_3 =2∙J_1   J_5 =4∙J_3 =4∙2∙J_1   J_(2p+1) =(2p)!!J_1 =2^p p!J_1
J2p:J2=1J0J4=3J2=31J0J6=5J4=531J0J2p=(2p1)!!J0J2p+1:J3=2J1J5=4J3=42J1J2p+1=(2p)!!J1=2pp!J1
Commented by abdo mathsup 649 cc last updated on 05/May/18
1) let prove that  J_(n+1) = nJ_(n−1)   J_(n+1) = ∫_0 ^∞   x^(n+1)  e^(−(x^2 /2)) dx  =−∫_0 ^∞  x^n (−xe^(−(x^2 /2)) dx) =−([ x^n e^(−(x^2 /2)) ]_0 ^(+∞)  −∫_0 ^∞ n x^(n−1) e^(−(x^2 /2)) dx)  = n ∫_0 ^∞   x^(n−1)  e^(−(x^2 /2))  dx = n J_(n−1)  ⇒  J_n =(n−1)J_(n−2)    ∀n≥2  2) J_(2p)  = (2p−1)J_(2p−2)  ⇒  Π_(p=1) ^n  J_(2p)  =Π_(p=1) ^n  J_(2p−2)  Π_(p=1) ^n  (2p−1)⇒  J_2 .J_4 .....J_(2n) =1.3.5....(2n−1) J_0 .J_2 ....J_(2n−2)  ⇒  J_(2n)  =1.3.5....(2n−1) J_0   =((1.2.3.4......(2n−1)(2n))/(2^n n!)) J_0   =(((2n)!)/(2^n  (n!))) J_0   J_0  = ∫_0 ^∞   e^(−(x^2 /2)) dx =_((√2) t=x)  ∫_0 ^∞    e^(−t^2 )  (√2)dt = (√2) ((√π)/2) =(√(π/2))  ⇒ J_(2n)   = (((2n)!)/(2^n  n!)) (√(π/2))  J_(2p+1)  = 2p J_(2p−1 )  ⇒ Π_(p=1) ^n  J_(2p+1)  = Π_(p=1) ^n (2p) Π_(p=1) ^n  J_(2p−1)   ⇒ J_3 .J_5 .....J_(2n+1) =2^n n!  J_1 .J_3 ....J_(2n−1)   ⇒ J_(2n+1)  = 2^n n!  J_1   J_1 = ∫_0 ^∞  x e^(−(x^2 /2)) dx =−∫_0 ^∞ (−x) e^(−(x^2 /2)) dx  =−[  e^(−(x^2 /2)) ]_0 ^(+∞) = 1 ⇒  J_(2n+1) = 2^n  (n!) .
1)letprovethatJn+1=nJn1Jn+1=0xn+1ex22dx=0xn(xex22dx)=([xnex22]0+0nxn1ex22dx)=n0xn1ex22dx=nJn1Jn=(n1)Jn2n22)J2p=(2p1)J2p2p=1nJ2p=p=1nJ2p2p=1n(2p1)J2.J4..J2n=1.3.5.(2n1)J0.J2.J2n2J2n=1.3.5.(2n1)J0=1.2.3.4(2n1)(2n)2nn!J0=(2n)!2n(n!)J0J0=0ex22dx=2t=x0et22dt=2π2=π2J2n=(2n)!2nn!π2J2p+1=2pJ2p1p=1nJ2p+1=p=1n(2p)p=1nJ2p1J3.J5..J2n+1=2nn!J1.J3.J2n1J2n+1=2nn!J1J1=0xex22dx=0(x)ex22dx=[ex22]0+=1J2n+1=2n(n!).

Leave a Reply

Your email address will not be published. Required fields are marked *