Menu Close

let-give-the-sequence-u-n-u-0-1-and-u-1-2-and-n-N-2u-n-2-3-u-n-1-u-n-let-give-the-sequence-v-n-v-n-u-n-1-u-n-1-prove-that-v-n-is-geometric-find-v-n-in-terms-of-n-2




Question Number 29148 by abdo imad last updated on 04/Feb/18
let give the sequence (u_n ) /u_0 =1 and u_1 =2 and  ∀ n ∈N   2u_(n+2) =3 u_(n+1) −u_n . let give the sequence (v_n ) /  v_n = u_(n+1) −u_n  .  1) prove that (v_n ) is geometric .find v_n in terms of n  2) find u_n  in terms of n.
letgivethesequence(un)/u0=1andu1=2andnN2un+2=3un+1un.letgivethesequence(vn)/vn=un+1un.1)provethat(vn)isgeometric.findvnintermsofn2)findunintermsofn.
Commented by abdo imad last updated on 08/Feb/18
1)v_(n+1) =u_(n+2)  −u_(n+1) =(3/2)u_(n+1)  −(1/2)u_n  −u_(n+1)   =(1/2)(u_(n+1) −u_n ) =(1/2) v_n  so (v_n ) is a geometric progression  with raizon q=(1/2) ⇒v_n =v_0 q^n   but v_0 =u_1 −u_0 =1  ⇒ v_n =((1/2))^n   2) Σ_(k=0) ^(n−1) v_k = Σ_(k=0) ^(n−1) (u_(k+1) −u_k )=u_1 −u_0  +u_2 −u_1 +...+u_n −u_(n−1)   =u_n  −u_0  ⇒u_n =1+Σ_(k=0) ^(n−1) ((1/2))^k =1+((1−((1/2))^n )/(1−(1/2)))  = 1+2(1−(1/2^n ))= 3 −(1/2^(n−1) )  u_n = 3−(1/2^(n−1) ) .
1)vn+1=un+2un+1=32un+112unun+1=12(un+1un)=12vnso(vn)isageometricprogressionwithraizonq=12vn=v0qnbutv0=u1u0=1vn=(12)n2)k=0n1vk=k=0n1(uk+1uk)=u1u0+u2u1++unun1=unu0un=1+k=0n1(12)k=1+1(12)n112=1+2(112n)=312n1un=312n1.

Leave a Reply

Your email address will not be published. Required fields are marked *