Menu Close

let-give-the-sequence-V-n-k-1-k-n-1-k-2-n-2-1-n-find-the-value-of-lim-n-gt-V-n-




Question Number 27664 by abdo imad last updated on 12/Jan/18
let give the sequence V_n = Π_(k=1) ^(k=n) (1+(k^2 /n^2 ) )^(1/n)   find the value of lim _(n−>∝)  V_n   .
letgivethesequenceVn=k=1k=n(1+k2n2)1nfindthevalueoflimn>∝Vn.
Commented by abdo imad last updated on 14/Jan/18
we have ln(V_n )= (1/n) ln( Π_(k=1) ^n (1+(k^2 /n^2 )))  =  (1/n) Σ_(k=1) ^(n )  ln(1 +(k^2 /n^2 )) and lim_(n−>∝)  ln( V_n )l = ∫_0 ^1 ln(1+x^2 )dx  for /t/<1  ln^, (1+t)= Σ_(n=0) ^∝ (−1)^n  t^n   ⇒ ln(1+t)= Σ_(n=0) ^∝ (((−1)^n t^(n+1) )/(n+1))= Σ_(n=1) ^∝ (−1)^(n−1) (t^n /n)  ⇒ln(1+x^2 )= Σ_(n=1) ^∝ (−1)^(n−1)  (x^(2n) /n)  and  ∫_0 ^1 ln(1+x^2 )dx= Σ_(n=1) ^∝  (((−1)^(n−1) )/n) ∫_0 ^1  x^(2n) dx  = Σ_(n=1) ^∝   (((−1)^(n−1) )/(n(2n+1)))  (1/2)∫_0 ^1 ln(1+x^2 )dx= Σ_(n=1) ^∝ ( (1/(2n)) −(1/(2n+1)))(−1)^(n−1)   = (1/2) Σ_(n=1) ^∝ (((−1)^(n−1) )/n) +Σ_(n=1) ^∝ (((−1)^n )/(2n+1)) but  Σ_(n=1) ^∝ (((−1)^(n−1) )/n) =ln2  Σ_(n=1) ^∝   (((−1)^n )/(2n+1))=(π/4) −1  ∫_0 ^1 ln(1+x^2 )dx=ln2 +(π/2) −2  lim_(n−>∝) ln(V_n )= ln2 +(π/2) −2  ⇒ lim_(n−>∝^ )  V_n  = 2 e^((π/2)−2)   .
wehaveln(Vn)=1nln(k=1n(1+k2n2))=1nk=1nln(1+k2n2)andlimn>∝ln(Vn)l=01ln(1+x2)dxfor/t/<1ln,(1+t)=n=0(1)ntnln(1+t)=n=0(1)ntn+1n+1=n=1(1)n1tnnln(1+x2)=n=1(1)n1x2nnand01ln(1+x2)dx=n=1(1)n1n01x2ndx=n=1(1)n1n(2n+1)1201ln(1+x2)dx=n=1(12n12n+1)(1)n1=12n=1(1)n1n+n=1(1)n2n+1butn=1(1)n1n=ln2n=1(1)n2n+1=π4101ln(1+x2)dx=ln2+π22limn>∝ln(Vn)=ln2+π22limn>Vn=2eπ22.

Leave a Reply

Your email address will not be published. Required fields are marked *