Question Number 29037 by abdo imad last updated on 03/Feb/18
$${let}\:{give}\:{the}\:{sequence}\:\:\left({y}_{{n}} \right)\:/{y}_{\mathrm{0}} \left({x}\right)=\mathrm{1}\:\:{and} \\ $$$${y}_{{n}} \left({x}\right)=\:\mathrm{1}+\:\int_{\mathrm{0}} ^{{x}} \left({y}_{{n}−\mathrm{1}} \left({t}\right)\right)^{\mathrm{2}} {dt}\:,\:{let}\:{suppose}\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{prove} \\ $$$${that}\:\left({y}_{{n}} \right)\:{is}\:{increasing}\:{majored}\:{by}\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:{if}\:{y}={lim}_{{n}\rightarrow+\infty} {y}_{{n}} \\ $$$${prove}\:{that}\:{y}\:{is}\:{solution}\:{of}\:{differencial}\:{equation} \\ $$$${y}^{,} ={y}^{\mathrm{2}} \:{and}\:{y}\left({o}\right)=\mathrm{1}. \\ $$